Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:boekej01

Total Results:

489


Interplay Between Histone H3 Lysine 56 Deacetylation and Chromatin Modifiers in Response to DNA Damage

Simoneau, Antoine; Delgoshaie, Neda; Celic, Ivana; Dai, Junbiao; Abshiru, Nebiyu; Costantino, Santiago; Thibault, Pierre; Boeke, Jef D; Verreault, Alain; Wurtele, Hugo
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56Ac) is present in newly synthesized histones deposited throughout the genome during DNA replication. The sirtuins Hst3 and Hst4 deacetylate H3K56 after S-phase, and virtually all histone H3 molecules are K56-acetylated throughout the cell cycle in hst3 hst4 mutants. Failure to deacetylate H3K56 causes thermosensitivity, spontaneous DNA damage, and sensitivity to replicative stress via molecular mechanisms that remain unclear. Here we demonstrate that, unlike wild-type cells, hst3 hst4 cells are unable to complete genome duplication and accumulate persistent foci containing the homologous recombination protein Rad52 after exposure to genotoxic drugs during S-phase. In response to replicative stress, cells lacking Hst3 and Hst4 also displayed intense foci containing the Rfa1 subunit of the single-stranded DNA binding protein complex RPA, as well as persistent activation of DNA damage-induced kinases. To investigate the basis of these phenotypes, we identified histone point mutations that modulate the temperature and genotoxic drug sensitivity of hst3 hst4 cells. We found that reducing the levels of histone H4 lysine 16 acetylation or H3 lysine 79 methylation partially suppresses these sensitivities and reduces spontaneous and genotoxin-induced activation of the DNA damage response kinase Rad53 in hst3 hst4 cells. Our data further suggest that elevated DNA damage-induced signalling significantly contributes to the phenotypes of hst3 hst4 cells. Overall, these results outline a novel interplay between H3K56Ac, H3K79 methylation and H4K16 acetylation in the cellular response to DNA damage.
PMCID:4423362
PMID: 25786853
ISSN: 0016-6731
CID: 1506262

RADOM, an Efficient In Vivo Method for Assembling Designed DNA Fragments up to 10 kb Long in Saccharomyces cerevisiae

Lin, Qiuhui; Jia, Bin; Mitchell, Leslie A; Luo, Jingchuan; Yang, Kun; Zeller, Karen I; Zhang, Wenqian; Xu, Zhuwei; Stracquadanio, Giovanni; Bader, Joel S; Boeke, Jef D; Yuan, Ying-Jin
We describe rapid assembly of DNA overlapping multifragments (RADOM), an improved assembly method via homologous recombination in Saccharomyces cerevisiae, which combines assembly in yeasto with blue/white screening in Escherichia coli. We show that RADOM can successfully assemble approximately 3 and approximately 10 kb DNA fragments that are highly similar to the yeast genome rapidly and accurately. This method was tested in the Build-A-Genome course by undergraduate students, where 125 approximately 3 kb "minichunks" from the synthetic yeast genome project Sc2.0 were assembled. Here, 122 out of 125 minichunks achieved insertions with correct sizes, and 102 minichunks were sequenced verified. As this method reduces the time-consuming and labor-intensive efforts of yeast assembly by improving the screening efficiency for correct assemblies, it may find routine applications in the construction of DNA fragments, especially in hierarchical assembly projects.
PMID: 24895839
ISSN: 2161-5063
CID: 1031032

Intrinsic biocontainment: Multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes

Cai, Yizhi; Agmon, Neta; Choi, Woo Jin; Ubide, Alba; Stracquadanio, Giovanni; Caravelli, Katrina; Hao, Haiping; Bader, Joel S; Boeke, Jef D
Biocontainment may be required in a wide variety of situations such as work with pathogens, field release applications of engineered organisms, and protection of intellectual properties. Here, we describe the control of growth of the brewer's yeast, Saccharomyces cerevisiae, using both transcriptional and recombinational "safeguard" control of essential gene function. Practical biocontainment strategies dependent on the presence of small molecules require them to be active at very low concentrations, rendering them inexpensive and difficult to detect. Histone genes were controlled by an inducible promoter and controlled by 30 nM estradiol. The stability of the engineered genes was separately regulated by the expression of a site-specific recombinase. The combined frequency of generating viable derivatives when both systems were active was below detection (<10-10), consistent with their orthogonal nature and the individual escape frequencies of <10-6. Evaluation of escaper mutants suggests strategies for reducing their emergence. Transcript profiling and growth test suggest high fitness of safeguarded strains, an important characteristic for wide acceptance.
PMCID:4330768
PMID: 25624482
ISSN: 0027-8424
CID: 1447632

Pathway transplantation into yeast as a model for human disease [Meeting Abstract]

Agmon, Neta; Boeke, Jef D
ISI:000361466200394
ISSN: 1097-0061
CID: 1795002

The synthetic yeast genome, Sc2.0 [Meeting Abstract]

Boeke, Jef D
ISI:000361466200035
ISSN: 1097-0061
CID: 1795122

Human Genomics. Sleeping dogs of the genome

Gorbunova, Vera; Boeke, Jef D; Helfand, Stephen L; Sedivy, John M
PMCID:4312280
PMID: 25477445
ISSN: 0036-8075
CID: 1371272

Circular permutation of a synthetic eukaryotic chromosome with the telomerator

Mitchell, Leslie A; Boeke, Jef D
Chromosome engineering is a major focus in the fields of systems biology, genetics, synthetic biology, and the functional analysis of genomes. Here, we describe the "telomerator," a new synthetic biology device for use in Saccharomyces cerevisiae. The telomerator is designed to inducibly convert circular DNA molecules into mitotically stable, linear chromosomes replete with functional telomeres in vivo. The telomerator cassette encodes convergent yeast telomere seed sequences flanking the I-SceI homing endonuclease recognition site in the center of an intron artificially transplanted into the URA3 selectable/counterselectable auxotrophic marker. We show that inducible expression of the homing endonuclease efficiently generates linear molecules, identified by using a simple plate-based screening method. To showcase its functionality and utility, we use the telomerator to circularly permute a synthetic yeast chromosome originally constructed as a circular molecule, synIXR, to generate 51 linear variants. Many of the derived linear chromosomes confer unexpected phenotypic properties. This finding indicates that the telomerator offers a new way to study the effects of gene placement on chromosomes (i.e., telomere proximity). However, that the majority of synIXR linear derivatives support viability highlights inherent tolerance of S. cerevisiae to changes in gene order and overall chromosome structure. The telomerator serves as an important tool to construct artificial linear chromosomes in yeast; the concept can be extended to other eukaryotes.
PMCID:4260612
PMID: 25378705
ISSN: 0027-8424
CID: 1341502

High-temporal-resolution view of transcription and chromatin states across distinct metabolic states in budding yeast

Kuang, Zheng; Cai, Ling; Zhang, Xuekui; Ji, Hongkai; Tu, Benjamin P; Boeke, Jef D
Under continuous, glucose-limited conditions, budding yeast exhibit robust metabolic cycles associated with major oscillations of gene expression. How such fluctuations are linked to changes in chromatin status is not well understood. Here we examine the correlated genome-wide transcription and chromatin states across the yeast metabolic cycle at unprecedented temporal resolution, revealing a 'just-in-time supply chain' by which components from specific cellular processes such as ribosome biogenesis become available in a highly coordinated manner. We identify distinct chromatin and splicing patterns associated with different gene categories and determine the relative timing of chromatin modifications relative to maximal transcription. There is unexpected variation in the chromatin modification and expression relationship, with histone acetylation peaks occurring with varying timing and 'sharpness' relative to RNA expression both within and between cycle phases. Chromatin-modifier occupancy reveals subtly distinct spatial and temporal patterns compared to those of the modifications themselves.
PMCID:4190017
PMID: 25173176
ISSN: 1545-9985
CID: 1162832

Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells

Shimizu, Akira; Nakatani, Yoko; Nakamura, Takako; Jinno-Oue, Atsushi; Ishikawa, Osamu; Boeke, Jef D; Takeuchi, Yasuhiro; Hoshino, Hiroo
The synthesis and subsequent genomic integration of DNA that is complementary to the genomes of non-retroviral RNA viruses are rarely observed. However, upon infection of various human cell lines and primary fibroblasts with the vesicular stomatitis virus (VSV), we detected DNA complementary to the VSV RNA. The VSV DNA was detected in the cytoplasm as single-stranded DNA fully complementary to the viral mRNA from the poly(A) region to the 7-methyl guanosine cap. The formation of this DNA was cell-dependent. Experimentally, we found that the transduction of cells that do not produce VSV DNA with the long interspersed nuclear element 1 and their infection with VSV could lead to the formation of VSV DNA. Viral DNA complementary to other RNA viruses was also detected in the respective infected human cells. Thus, the genetic information of the non-retroviral RNA virus genome can flow into the DNA of mammalian cells expressing LINE-1-like elements.
PMCID:4038843
PMID: 24875540
ISSN: 2045-2322
CID: 1018892

Long Interspersed Element-1 Protein Expression Is a Hallmark of Many Human Cancers

Rodic, Nemanja; Sharma, Reema; Sharma, Rajni; Zampella, John; Dai, Lixin; Taylor, Martin S; Hruban, Ralph H; Iacobuzio-Donahue, Christine A; Maitra, Anirban; Torbenson, Michael S; Goggins, Michael; Shih, Ie-Ming; Duffield, Amy S; Montgomery, Elizabeth A; Gabrielson, Edward; Netto, George J; Lotan, Tamara L; De Marzo, Angelo M; Westra, William; Binder, Zev A; Orr, Brent A; Gallia, Gary L; Eberhart, Charles G; Boeke, Jef D; Harris, Chris R; Burns, Kathleen H
Cancers comprise a heterogeneous group of human diseases. Unifying characteristics include unchecked abilities of tumor cells to proliferate and spread anatomically, and the presence of clonal advantageous genetic changes. However, universal and highly specific tumor markers are unknown. Herein, we report widespread long interspersed element-1 (LINE-1) repeat expression in human cancers. We show that nearly half of all human cancers are immunoreactive for a LINE-1-encoded protein. LINE-1 protein expression is a common feature of many types of high-grade malignant cancers, is rarely detected in early stages of tumorigenesis, and is absent from normal somatic tissues. Studies have shown that LINE-1 contributes to genetic changes in cancers, with somatic LINE-1 insertions seen in selected types of human cancers, particularly colon cancer. We sought to correlate this observation with expression of the LINE-1-encoded protein, open reading frame 1 protein, and found that LINE-1 open reading frame 1 protein is a surprisingly broad, yet highly tumor-specific, antigen.
PMCID:4005969
PMID: 24607009
ISSN: 0002-9440
CID: 886902