Searched for: in-biosketch:yes
person:estelm01
HDAC2 deficiency and histone acetylation - Reply [Letter]
Ropero, Santiago; Esteller, Manel
ISI:000257166500008
ISSN: 1061-4036
CID: 5299062
Longevity, Epigenetics and Cancer
Chapter by: Agrelo, Ruben; Fraga, Mano F; Esteller, Manel
in: Epigenetics by Tost, Jorg
Norfolk, UK : Caister Academic Press, c2008
pp. "-
ISBN: 9781904455233
CID: 5319262
Mecp2-null mice provide new neuronal targets for Rett syndrome
Urdinguio, Rocio G; Lopez-Serra, Lidia; Lopez-Nieva, Pilar; Alaminos, Miguel; Diaz-Uriarte, Ramon; Fernandez, Agustin F; Esteller, Manel
BACKGROUND:Rett syndrome (RTT) is a complex neurological disorder that is one of the most frequent causes of mental retardation in women. A great landmark in research in this field was the discovery of a relationship between the disease and the presence of mutations in the gene that codes for the methyl-CpG binding protein 2 (MeCP2). Currently, MeCP2 is thought to act as a transcriptional repressor that couples DNA methylation and transcriptional silencing. The present study aimed to identify new target genes regulated by Mecp2 in a mouse model of RTT. METHODOLOGY/PRINCIPAL FINDINGS/RESULTS:We have compared the gene expression profiles of wild type (WT) and Mecp2-null (KO) mice in three regions of the brain (cortex, midbrain, and cerebellum) by using cDNA microarrays. The results obtained were confirmed by quantitative real-time PCR. Subsequent chromatin immunoprecipitation assays revealed seven direct target genes of Mecp2 bound in vivo (Fkbp5, Mobp, Plagl1, Ddc, Mllt2h, Eya2, and S100a9), and three overexpressed genes due to an indirect effect of a lack of Mecp2 (Irak1, Prodh and Dlk1). The regions bound by Mecp2 were always methylated, suggesting the involvement of the methyl-CpG binding domain of the protein in the mechanism of interaction. CONCLUSIONS:We identified new genes that are overexpressed in Mecp2-KO mice and are excellent candidate genes for involvement in various features of the neurological disease. Our results demonstrate new targets of MeCP2 and provide us with a better understanding of the underlying mechanisms of RTT.
PMCID:2576441
PMID: 18989361
ISSN: 1932-6203
CID: 5259472
Epigenetic gene regulation in cancer
Ballestar, Esteban; Esteller, Manel
The observation that cancer cells suffer profound alterations in the DNA methylation profile, with functional consequences in the activity of key genes, together with the recognition that epigenetic alterations might be as important as genetic defects in the origin of cancers has started a new era in cancer research. In a few years, key discoveries have abruptly changed our vision of the determinants of cancer. Breakthroughs in the cancer epigenetics field include the finding of a tumor-type specificity of genes that suffer epigenetic deregulation at both DNA methylation and histone modifications, the interconnection between different epigenetic marks, the identification of mechanisms of targeting of epigenetic alterations, including the participation of Polycomb group (PcG) proteins, or the involvement of small RNAs, which regulate hundreds of target genes. All these findings have multiple implications: first, they shed light on the mechanistic insights by which epigenetic defects complement genetic alterations in the development and progression of cancer; second, epigenetic alterations appear to play a prominent role in the initiation of cancer. In addition, because epigenetic changes are reversible, enzymes involved in their maintenance stand as targets for a variety of compounds for therapy.
PMID: 18282509
ISSN: 0065-2660
CID: 5259302
Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells
Jacinto, Filipe V; Ballestar, Esteban; Ropero, Santiago; Esteller, Manel
CpG island promoter hypermethylation of tumor suppressor genes is a common hallmark of human cancer, and new large-scale epigenomic technologies might be useful in our attempts to define the complete DNA hypermethylome of tumor cells. Here, we report a functional search for hypermethylated CpG islands using the colorectal cancer cell line HCT-116, in which two major DNA methyltransferases, DNMT1 and DNMT3b, have been genetically disrupted (DKO cells). Using methylated DNA immunoprecipitation methodology in conjunction with promoter microarray analyses, we found that DKO cells experience a significant loss of hypermethylated CpG islands. Further characterization of these candidate sequences shows CpG island promoter hypermethylation and silencing of genes with potentially important roles in tumorigenesis, such as the Ras guanine nucleotide-releasing factor (RASGRF2), the apoptosis-associated basic helix-loop transcription factor (BHLHB9), and the homeobox gene (HOXD1). Hypermethylation of these genes occurs in premalignant lesions and accumulates during tumorigenesis. Thus, our results show the usefulness of DNMT genetic disruption strategies combined with methylated DNA immunoprecipitation in searching for unknown hypermethylated candidate genes in human cancer that might aid our understanding of the biology of the disease and be of potential translational use.
PMID: 18089774
ISSN: 1538-7445
CID: 5259282
Immunohistochemical classification of non-BRCA1/2 tumors identifies different groups that demonstrate the heterogeneity of BRCAX families
Honrado, Emiliano; Osorio, Ana; Milne, Roger L; Paz, María F; Melchor, Lorenzo; Cascón, Alberto; Urioste, Miguel; Cazorla, Alicia; DÃez, Orland; Lerma, Enrique; Esteller, Manel; Palacios, José; BenÃtez, Javier
Around 25% of hereditary breast and ovarian cancer families have mutations in the BRCA1 and BRCA2 genes. The search for other genes has until now failed, probably because there is not one single BRCAX gene, but rather various genes that may each be responsible for a small number of breast cancer families and/or may interact according to a polygenic model. We have studied 50 tumors from probands belonging to non-BRCA1/2 breast cancer families (BRCAX), using 25 immunohistochemical markers. The objective was to classify these tumors and confirm that they are heterogeneous. Unsupervised cluster analysis showed the existence of the following two main groups of tumors: high-grade and estrogen receptor (ER)-negative tumors (50%), and low-grade and ER-positive tumors (50%). In addition we identified five subgroups, three among the high-grade and two among the low-grade groups; one overexpressing HER-2 (18%); one with a basal-like phenotype (14%); one with a normal breast-like phenotype (18%); a luminal A subgroup (36%), and a luminal B subgroup (14%). Hypermethylation of the BRCA1 gene was observed in 42% of the cases, spread across all five subgroups, but only 37% of those had loss of heterozygosity as well. These latter cases were all clustered in the high-grade group and the majority of them in the basal-like subgroup. Our results show that familial non-BRCA1/2 tumors are heterogeneous and suggest a polygenic model for explaining the majority of BRCAX families. In addition we have defined a subset of them that have somatic inactivation of the BRCA1 gene.
PMID: 17885670
ISSN: 0893-3952
CID: 5259242
WNT10B functional dualism: beta-catenin/Tcf-dependent growth promotion or independent suppression with deregulated expression in cancer
Yoshikawa, Hirohide; Matsubara, Kenichi; Zhou, Xiaoling; Okamura, Shu; Kubo, Takahiko; Murase, Yaeko; Shikauchi, Yuko; Esteller, Manel; Herman, James G; Wei Wang, Xin; Harris, Curtis C
We found aberrant DNA methylation of the WNT10B promoter region in 46% of primary hepatocellular carcinoma (HCC) and 15% of colon cancer samples. Three of 10 HCC and one of two colon cancer cell lines demonstrated low or no expression, and 5-aza-2'deoxycytidine reactivated WNT10B expression with the induction of demethylation, indicating that WNT10B is silenced by DNA methylation in some cancers, whereas WNT10B expression is up-regulated in seven of the 10 HCC cell lines and a colon cancer cell line. These results indicate that WNT10B can be deregulated by either overexpression or silencing in cancer. We found that WNT10B up-regulated beta-catenin/Tcf activity. However, WNT10B-overexpressing cells demonstrated a reduced growth rate and anchorage-independent growth that is independent of the beta-catenin/Tcf activation, because mutant beta-catenin-transduced cells did not suppress growth, and dominant-negative hTcf-4 failed to alleviate the growth suppression by WNT10B. Although WNT10B expression alone inhibits cell growth, it acts synergistically with the fibroblast growth factor (FGF) to stimulate cell growth. WNT10B is bifunctional, one function of which is involved in beta-catenin/Tcf activation, and the other function is related to the down-regulation of cell growth through a different mechanism. We suggest that FGF switches WNT10B from a negative to a positive cell growth regulator.
PMCID:2043567
PMID: 17761539
ISSN: 1059-1524
CID: 5259232
Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway
Blanco, David; Vicent, Silvestre; Fraga, Mario F; Fernandez-Garcia, Ignacio; Freire, Javier; Lujambio, Amaia; Esteller, Manel; Ortiz-de-Solorzano, Carlos; Pio, Ruben; Lecanda, Fernando; Montuenga, Luis M
The molecular hallmarks of inflammation-mediated lung carcinogenesis have not been fully clarified, mainly due to the scarcity of appropriate animal models. We have used a silica-induced multistep lung carcinogenesis model driven by chronic inflammation to study the evolution of molecular markers and genetic alterations. We analyzed markers of DNA damage response (DDR), proliferative stress, and telomeric stress: gamma-H2AX, p16, p53, and TERT. Lung cancer-related epigenetic and genetic alterations, including promoter hypermethylation status of p16(CDKN2A), APC, CDH13, Rassf1, and Nore1A, as well as mutations of Tp53, epidermal growth factor receptor, K-ras, N-ras, and c-H-ras, have been also studied. Our results showed DDR pathway activation in preneoplastic lesions, in association with inducible nitric oxide synthase and p53 induction. p16 was also induced in early tumorigenic progression and was inactivated in bronchiolar dysplasias and tumors. Remarkably, lack of mutations of Ras and epidermal growth factor receptor, and a very low frequency of Tp53 mutations suggest that they are not required for tumorigenesis in this model. In contrast, epigenetic alterations in p16(CDKN2A), CDH13, and APC, but not in Rassf1 and Nore1A, were clearly observed. These data suggest the existence of a specific molecular signature of inflammation-driven lung carcinogenesis that shares some, but not all, of the molecular landmarks of chemically induced lung cancer.
PMCID:2040211
PMID: 17971904
ISSN: 1476-5586
CID: 5259272
The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells
Aguilera, Oscar; Peña, Cristina; García, José Miguel; Larriba, María Jesús; Ordóñez-Morán, Paloma; Navarro, Diego; Barbáchano, Antonio; López de Silanes, Isabel; Ballestar, Esteban; Fraga, Mario F; Esteller, Manel; Gamallo, Carlos; Bonilla, Félix; González-Sancho, José Manuel; Muñoz, Alberto
The Wnt-beta-catenin pathway is aberrantly activated in most colon cancers. DICKKOPF-1 (DKK-1) gene encodes an extracellular Wnt inhibitor that blocks the formation of signalling receptor complexes at the plasma membrane. We report that 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3], the most active vitamin D metabolite, increases the level of DKK-1 RNA and protein in human SW480-ADH colon cancer cells. This effect is dose dependent, slow and depends on the presence of a transcription-competent nuclear vitamin D receptor (VDR). Accordingly, 1,25(OH)2D3 activates a 2300 bp fragment of the human DKK-1 gene promoter. Chromatin immunoprecipitation assays revealed that 1,25(OH)2D3 treatment induced a pattern of histone modifications which is compatible with transcriptionally active chromatin. DKK-1 is expressed at high level in colon cancer cell lines with a differentiated phenotype such as Caco-2 or HT-29. Exogenous expression of E-cadherin into SW480-ADH cells results in a strong adhesive phenotype and a 17-fold increase in DKK-1 RNA. In contrast, an E-cadherin blocking antibody inhibits 1,25(OH)2D3-induced differentiation of SW480-ADH cells and DKK-1 gene expression. Remarkably, in vivo treatment with the vitamin D analogue EB1089 induced DKK-1 protein expression in SW480-ADH cells xenografted in immunodeficient mice, and a correlation was observed in the expression of VDR and DKK-1 RNA in a series of 32 human colorectal tumours. These data indicate that 1,25(OH)2D3 activates the transcription of the DKK-1 gene, probably in an indirect way that is associated to the promotion of a differentiated phenotype. DKK-1 gene induction constitutes a novel mechanism of inhibition of Wnt signalling and antitumour action by 1,25(OH)2D3.
PMID: 17449905
ISSN: 0143-3334
CID: 5259162
Combinatorial effects of splice variants modulate function of Aiolos
Caballero, Rosalia; Setien, Fernando; Lopez-Serra, Lidia; Boix-Chornet, Manuel; Fraga, Mario F; Ropero, Santiago; Megias, Diego; Alaminos, Miguel; Sanchez-Tapia, Eva M; Montoya, Maria C; Esteller, Manel; Gonzalez-Sarmiento, Rogelio; Ballestar, Esteban
The transcription factor Aiolos (also known as IKZF3), a member of the Ikaros family of zinc-finger proteins, plays an important role in the control of B lymphocyte differentiation and proliferation. Previously, multiple isoforms of Ikaros family members arising from differential splicing have been described and we now report a number of novel isoforms of Aiolos. It has been demonstrated that full-length Ikaros family isoforms localize to heterochromatin and that they can associate with complexes containing histone deacetylase (HDAC). In this study, for the first time we directly investigate the cellular localization of various Aiolos isoforms, their ability to heterodimerize with Ikaros and associate with HDAC-containing complexes, and the effects on histone modification and binding to putative targets. Our work demonstrates that the cellular activities of Aiolos isoforms are dependent on combinations of various functional domains arising from the differential splicing of mRNA transcripts. These data support the general principle that the function of an individual protein is modulated through alternative splicing, and highlight a number of potential implications for Aiolos in normal and aberrant lymphocyte function.
PMID: 17646674
ISSN: 0021-9533
CID: 5259222