Searched for: in-biosketch:yes
person:paganm02
Skp2 Contains a Novel Cyclin A Binding Domain That Directly Protects Cyclin A from Inhibition by p27Kip1
Ji, Peng; Goldin, Luba; Ren, Hao; Sun, Daqian; Guardavaccaro, Daniele; Pagano, Michele; Zhu, Liang
Skp2 is well known as the F-box protein of the SCF(Skp2).Roc1 complex targeting p27 for ubiquitylation. Skp2 also forms complexes with cyclin A, which is particularly abundant in cancer cells due to frequent Skp2 overexpression, but the mechanism and significance of this interaction remain unknown. Here, we report that Skp2-cyclin A interaction is mediated by novel interaction sequences on both Skp2 and cyclin A, distinguishing it from the well known RXL-hydrophobic patch interaction between cyclins and cyclin-binding proteins. Furthermore, a short peptide derived from the mapped cyclin A binding sequences of Skp2 can block Skp2-cyclin A interaction but not p27-cyclin A interaction, whereas a previously identified RXL peptide can block p27-cyclin A interaction but not Skp2-cyclin A interaction. Functionally, Skp2-cyclin A interaction is separable from Skp2 ability to mediate p27 ubiquitylation. Rather, Skp2-cyclin A interaction serves to directly protect cyclin A-Cdk2 from inhibition by p27 through competitive binding. Finally, we show that disruption of cyclin A binding with point mutations in the cyclin A binding domain of Skp2 compromises the ability of overexpressed Skp2 to counter cell cycle arrest by a p53/p21-mediated cell cycle checkpoint without affecting its ability to cause degradation of cellular p27 and p21. These findings reveal a new functional mechanism of Skp2 and a new regulatory mechanism of cyclin A
PMID: 16774918
ISSN: 0021-9258
CID: 66921
SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response
Peschiaroli, Angelo; Dorrello, N Valerio; Guardavaccaro, Daniele; Venere, Monica; Halazonetis, Thanos; Sherman, Nicholas E; Pagano, Michele
During replicative stress, Claspin mediates the phosphorylation and consequent activation of Chk1 by ATR. We found that during recovery from the DNA replication checkpoint response, Claspin is degraded in a betaTrCP-dependent manner. In vivo, Claspin is phosphorylated in a canonical DSGxxS degron sequence, which is typical of betaTrCP substrates. Phosphorylation of Claspin is mediated by Plk1 and is essential for binding to betaTrCP. In vitro ubiquitylation of Claspin requires betaTrCP, Plk1, and an intact DSGxxS degron. Significantly, expression of a stable Claspin mutant unable to bind betaTrCP prolongs the activation of Chk1, thereby attenuating the recovery from the DNA replication stress response and significantly delaying entry into mitosis. Thus, the SCFbetaTrCP-dependent degradation of Claspin is necessary for the efficient and timely termination of the DNA replication checkpoint. Importantly, in response to DNA damage in G2, Claspin proteolysis is inhibited to allow the prompt reestablishment of the checkpoint
PMID: 16885022
ISSN: 1097-2765
CID: 66918
Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth
Lasorella, Anna; Stegmuller, Judith; Guardavaccaro, Daniele; Liu, Guangchao; Carro, Maria S; Rothschild, Gerson; de la Torre-Ubieta, Luis; Pagano, Michele; Bonni, Azad; Iavarone, Antonio
In the developing nervous system, Id2 (inhibitor of DNA binding 2, also known as inhibitor of differentiation 2) enhances cell proliferation, promotes tumour progression and inhibits the activity of neurogenic basic helix-loop-helix (bHLH) transcription factors. The anaphase promoting complex/cyclosome and its activator Cdh1 (APC/C(Cdh1)) restrains axonal growth but the targets of APC/C(Cdh1) in neurons are unknown. Id2 and other members of the Id family are very unstable proteins that are eliminated as cells enter the quiescent state, but how they are targeted for degradation has remained elusive. Here we show that Id2 interacts with the core subunits of APC/C and Cdh1 in primary neurons. APC/C(Cdh1) targets Id2 for degradation through a destruction box motif (D box) that is conserved in Id1 and Id4. Depletion of Cdh1 stabilizes Id proteins in neurons, whereas Id2 D-box mutants are impaired for Cdh1 binding and remain stable in cells that exit from the cell cycle and contain active APC/C(Cdh1). Mutants of the Id2 D box enhance axonal growth in cerebellar granule neurons in vitro and in the context of the cerebellar cortex, and overcome the myelin inhibitory signals for growth. Conversely, activation of bHLH transcription factors induces a cluster of genes with potent axonal inhibitory functions including the gene coding for the Nogo receptor, a key transducer of myelin inhibition. Degradation of Id2 in neurons permits the accumulation of the Nogo receptor, thereby linking APC/C(Cdh1) activity with bHLH target genes for the inhibition of axonal growth. These findings indicate that deregulated Id activity might be useful to reprogramme quiescent neurons into the axonal growth mode
PMID: 16810178
ISSN: 1476-4687
CID: 66920
A peptidomimetic siRNA transfection reagent for highly effective gene silencing
Utku, Yeliz; Dehan, Elinor; Ouerfelli, Ouathek; Piano, Fabio; Zuckermann, Ronald N; Pagano, Michele; Kirshenbaum, Kent
RNA interference (RNAi) techniques hold forth great promise for therapeutic silencing of deleterious genes. However, clinical applications of RNAi require the development of safe and efficient methods for intracellular delivery of small interfering RNA (siRNA) oligonucleotides specific to targeted genes. We describe the use of a lipitoid, a cationic oligopeptoid-phospholipid conjugate, for non-viral transfection of synthetic siRNA oligos in cell culture. This peptidomimetic delivery vehicle allows for efficient siRNA transfection in a variety of human cell lines with negligible toxicity and promotes extensive downregulation of the targeted genes at both the protein and the mRNA level. We compare the lipitoid reagent to a standard commercial transfection reagent. The lipitoid is highly efficient even in primary IMR-90 human lung fibroblasts in which other commercial reagents are typically ineffective
PMID: 16880950
ISSN: 1742-206x
CID: 66919
APC/CCDC20 controls the ubiquitin-mediated degradation of p21 during early mitosis [Meeting Abstract]
Amador, V; Gonzalez-Santamaria, P; Pagano, M
ISI:000238914001041
ISSN: 1742-464x
CID: 69260
Modification of Cul1 regulates its association with proteasomal subunits
Bloom, Joanna; Peschiaroli, Angelo; Demartino, George; Pagano, Michele
ABSTRACT : BACKGROUND : Ubiquitylation targets proteins for degradation by the 26S proteasome. Some yeast and plant ubiquitin ligases, including the highly conserved SCF (Skp1/Cul1/F-box protein) complex, have been shown to associate with proteasomes. We sought to characterize interactions between SCF complexes and proteasomes in mammalian cells. RESULTS : We found that the binding of SCF complexes to proteasomes is conserved in higher eukaryotes. The Cul1 subunit associated with both sub-complexes of the proteasome, and high molecular weight forms of Cul1 bound to the 19S proteasome. Cul1 is ubiquitylated in vivo. Ubiquitylation of Cul1 promotes its binding to the S5a subunit of the 19S sub-complex without affecting Cul1 stability. CONCLUSION : The association of ubiquitylating enzymes with proteasomes may be an additional means to target ubiquitylated substrates for degradation
PMCID:1479330
PMID: 16759355
ISSN: 1747-1028
CID: 72425
Stabilizers and destabilizers controlling cell cycle oscillators
Guardavaccaro, Daniele; Pagano, Michele
Various destabilizing factors of the ubiquitin system contribute to the synchrony and unidirectionality of the cell cycle clock by finely tuning the activity of various CDKs. The recent findings of hierarchical and connected waves of cyclin stabilizers highlight the complexity of this network
PMID: 16600864
ISSN: 1097-2765
CID: 64207
Cell Division, a new open access online forum for and from the cell cycle community
Kaldis, Philipp; Pagano, Michele
ABSTRACT : Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases
PMCID:1459271
PMID: 16759411
ISSN: 1747-1028
CID: 66922
Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase
Hao, Bing; Zheng, Ning; Schulman, Brenda A; Wu, Geng; Miller, Julie J; Pagano, Michele; Pavletich, Nikola P
The ubiquitin-mediated proteolysis of the Cdk2 inhibitor p27(Kip1) plays a central role in cell cycle progression, and enhanced degradation of p27(Kip1) is associated with many common cancers. Proteolysis of p27(Kip1) is triggered by Thr187 phosphorylation, which leads to the binding of the SCF(Skp2) (Skp1-Cul1-Rbx1-Skp2) ubiquitin ligase complex. Unlike other known SCF substrates, p27(Kip1) ubiquitination also requires the accessory protein Cks1. The crystal structure of the Skp1-Skp2-Cks1 complex bound to a p27(Kip1) phosphopeptide shows that Cks1 binds to the leucine-rich repeat (LRR) domain and C-terminal tail of Skp2, whereas p27(Kip1) binds to both Cks1 and Skp2. The phosphorylated Thr187 side chain of p27(Kip1) is recognized by a Cks1 phosphate binding site, whereas the side chain of an invariant Glu185 inserts into the interface between Skp2 and Cks1, interacting with both. The structure and biochemical data support the proposed model that Cdk2-cyclin A contributes to the recruitment of p27(Kip1) to the SCF(Skp2)-Cks1 complex
PMID: 16209941
ISSN: 1097-2765
CID: 64214
The acidic tail domain of human Cdc34 is required for p27Kip1 ubiquitination and complementation of a cdc34 temperature sensitive yeast strain
Block, Karen; Appikonda, Srikanth; Lin, Horng-Ru; Bloom, Joanna; Pagano, Michele; Yew, P Renee
Human Cdc34 is an ubiquitin conjugating enzyme or E2 that ubiquitinates substrates including p27(Kip1), IkappaBalpha, Wee1, and MyoD. Cdc34 possesses a core catalytic domain encoding the active site cysteine and an acidic tail domain within the carboxyl terminal 36 amino acids. Studies suggest that Cdc34 is phosphorylated in mammalian cells at 5 potential residues within the tail domain. In order to study the biological significance of the Cdc34 acidic tail domain and the possible significance of phosphorylation within this region, we tested the ability of human Cdc34 mutants to complement the cdc34-2 temperature sensitive (ts) strain of Saccharomyces cerevisiae. Our studies indicated that complementation of the cdc34-2 ts strain was critically dependent upon the carboxyl-terminal 36 amino acids of human Cdc34, but did not require phosphorylation of human Cdc34 residues S203, S222, S231, T233, and S236. Further studies demonstrated that although a Cdc34 mutant bearing a deletion of the C-terminal 36 amino acids (Cdc34 1-200) was efficiently charged with ubiquitin by E1, it was severely reduced for the ability to ubiquitinate p27(Kip1) in vitro compared to wildtype Cdc34. Both in vivo and in vitro binding studies indicated that Cdc34 1-200 bound to the E3-SCF components, Cul1 and Roc1, at levels comparable to the wildtype Cdc34. These studies suggest that the 36 amino acid acidic tail domain of human Cdc34 is critical for its ability to transfer ubiquitin to a substrate and is dispensable for the association of Cdc34 with Cul1 and Roc1. We postulate that the tail domain of Cdc34 may be important for its efficient dissociation from Cul1 and Roc1, an essential requirement for ubiquitination by the budding yeast Cdc34p, or it may be required more directly for ubiquitin transfer to the substrate
PMID: 16123592
ISSN: 1551-4005
CID: 64216