Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:sigure01

Total Results:

162


Amyloid-beta injection in rat amygdala alters tau protein but not mRNA expression

Chambers CB; Sigurdsson EM; Hejna MJ; Lorens SA; Lee JM; Muma NA
Previously we demonstrated local and distant changes in tau protein immunoreactivity reminiscent of those seen in Alzheimer's disease (AD) following a unilateral injection of amyloid-beta (Abeta)(25-35) into the rat amygdala. To explore the relevance of these findings to AD, we compared the effects of Abeta(1-42) to those of Abeta(25-35). Injections of both Abeta(1-42) and Abeta(25-35) into rat amygdala resulted in increased tau-2 immunolabeling in neurons. To determine whether these alterations were due to changes in the expression of tau, we measured tau protein expression by Western blotting and tau mRNA isoform expression by the reverse transcription-polymerase chain reaction in the amygdala, hippocampus, and cerebellum following a unilateral injection of Abeta(25-35) or vehicle into the amygdala. The levels of tau proteins were increased bilaterally in the amygdala of Abeta(25-35)- compared to vehicle-treated animals 8 and 16 days following treatment. The molecular weights of tau proteins were decreased in the Abeta(25-35)-treated (59-69 kDa) compared to the vehicle-treated (67-72 kDa) animals 8 days following treatment. There were no changes in tau mRNA expression in any brain region examined. In this model, just as in AD, there is an increase in tau protein levels without a change in tau mRNA expression, suggesting that Abeta peptides may influence tau protein stability in both the rat and the human brain
PMID: 10716896
ISSN: 0014-4886
CID: 23486

In vivo reversal of amyloid-beta lesions in rat brain

Sigurdsson EM; Permanne B; Soto C; Wisniewski T; Frangione B
Cerebral amyloid-beta (Abeta) deposition is central to the neuropathological definition of Alzheimer disease (AD) with Abeta related toxicity being linked to its beta-sheet conformation and/or aggregation. We show that a beta-sheet breaker peptide (iAbeta5) dose-dependently and reproducibly induced in vivo disassembly of fibrillar amyloid deposits, with control peptides having no effect. The iAbeta5-induced disassembly prevented and/or reversed neuronal shrinkage caused by Abeta and reduced the extent of interleukin-1beta positive microglia-like cells that surround the Abeta deposits. These findings suggest that beta-sheet breakers, such as iAbeta5 or similar peptidomimetic compounds, may be useful for reducing the size and/or number of cerebral amyloid plaques in AD, and subsequently diminishing Abeta-related histopathology
PMID: 10744031
ISSN: 0022-3069
CID: 8565

beta-sheet breaker peptides prevent the formation of amyloid-beta deposits

Chapter by: Soto C; Sigurdsson EM; Morelli L; Kumar RA; Saborio GP; Castano EM; Frangione B
in: Alzheimer's disease and related disorders by Iqbal, Khalid [Eds]
Chichester, NY: Wiley, 1999
pp. ?-?
ISBN: 0471986836
CID: 2639

In vivo disassembly of cerebral amyloid-beta (Abeta) deposits in rat brain [Meeting Abstract]

Sigurdsson, E. M.; Permanne, B.; Soto, C.; Wisniewski, T.; Frangione, B.
BIOSIS:PREV200000210596
ISSN: 0190-5295
CID: 97639

beta-sheet breaker peptides as potential therapy for Alzheimer's disease

Sigurdsson, EM; Morelli, L; Kumar, RA; Castano, EM; Frangione, B; Soto, C
ISI:000078064200016
ISSN: 1461-6130
CID: 98326

Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy [see comments] [Comment]

Soto C; Sigurdsson EM; Morelli L; Kumar RA; Castano EM; Frangione B
Inhibition of cerebral amyloid beta-protein deposition seems to be an important target for Alzheimer's disease therapy. Amyloidogenesis could be inhibited by short synthetic peptides designed as beta-sheet breakers. Here we demonstrate a 5-residue peptide that inhibits amyloid beta-protein fibrillogenesis, disassembles preformed fibrils in vitro and prevents neuronal death induced by fibrils in cell culture. In addition, the beta-sheet breaker peptide significantly reduces amyloid beta-protein deposition in vivo and completely blocks the formation of amyloid fibrils in a rat brain model of amyloidosis. These findings may provide the basis for a new therapeutic approach to prevent amyloidosis in Alzheimer's disease
PMID: 9662374
ISSN: 1078-8956
CID: 7803

Bilateral injections of amyloid-beta 25-35 into the amygdala of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects

Sigurdsson EM; Lee JM; Dong XW; Hejna MJ; Lorens SA
To examine the time course of the histopathological effects of bilateral injections of amyloid-beta 25-35 (A beta) and to determine if these effects are associated with a reduction in choline acetyltransferase activity and behavioral impairments, we injected A beta (5.0 nmol) into the amygdala of young male Fischer rats. Control rats received vehicle infusions. For histological analysis, animals were sacrificed at 8, 32, 64, 96, and 128 days postoperatively (n = 21-33 per timepoint). A beta induced neuronal tau-2 staining in the right, but not the left amygdala and hippocampus. A beta also induced reactive astrocytosis and neuronal shrinkage within the right hippocampus and amygdala, respectively. As with tau-2, these same brain regions within the left hemisphere in the A beta-treated rats were significantly less affected. In addition, A beta appeared to induce microglial and neuronal interleukin-1beta staining. The histopathological effects of A beta peaked at 32 days postoperatively but were not associated with a reduction in amygdaloid choline acetyltransferase activity. In a separate experiment, behavioral effects of bilateral intra-amygdaloid injections of A beta were analyzed at 34-52 days postoperatively. In an open field test, the treatment groups differed only in the numbers of rears emitted (p = 0.016). There was no effect of A beta in the Morris water maze or in the acquisition and retention of a one-way conditioned avoidance response. These data suggest a laterality in the histopathological effects of A beta and that the effects of single injections are in part transient. These findings also suggest a direct association between plaque and tangle formation in Alzheimer's disease, and support the use of this rat model to screen drugs that may alter the initial pathological events associated with Alzheimer's disease, that occur before the manifestations of extensive behavioral impairments become evident
PMID: 9461057
ISSN: 0197-4580
CID: 23487

Laterality in the histological effects of injections of amyloid-beta 25-35 into the amygdala of young Fischer rats

Sigurdsson EM; Lee JM; Dong XW; Hejna MJ; Lorens SA
We have observed that single amyloid-beta 25-35 (A beta) injections (5.0 nmol) into the right amygdala of rats produce progressive cytoskeletal and astrogliotic reactions not only within the amygdala, but also in distal brain regions that project to the amygdala. To determine if these effects are potentiated by bilateral injections, we injected A beta (5.0 nmol) into the left and right amygdala of young male Fischer rats. Animals were sacrificed 32 days postoperatively. Bilateral infusions of A beta induced significant neuronal shrinkage, tau-2 neuronal staining, and reactive astrocytosis within the right amygdala and/or hippocampus, compared with vehicle-treated rats. Surprisingly, the same brain regions within the left hemisphere were significantly less affected even though no differences were observed between the left and right amygdala in the size of Congored-positive A beta deposits. Unilateral injections of A beta into the left amygdala led to significant histological changes in the right amygdala and hippocampus, but not in the same brain regions within the left hemisphere. These results suggest a laterality in the histopathological effects of A beta in male Fischer rats. Identification of the cause for the lateralized effect of A beta may prove valuable for understanding the etiology of Alzheimer disease and provide possible therapeutic strategies designed to slow the progression of the disease
PMID: 9184662
ISSN: 0022-3069
CID: 23489

Local and distant histopathological effects of unilateral amyloid-beta 25-35 injections into the amygdala of young F344 rats

Sigurdsson EM; Lorens SA; Hejna MJ; Dong XW; Lee JM
To determine if amyloid-beta (A beta) induces tau-immunoreactivity (IR) and reactive astrocytosis in vivo, we injected A beta 25-35 (5.0 nmol) into the right amygdala of rats. At 8 days postinjection, the peptide induced tau-2 IR in neuronal cell bodies and processes ipsilaterally in the amygdala, cingulate cortex, and hippocampus. At 32 days postinjection, the intensity of tau-2 IR was greater than at 8 days in the amygdala and hippocampus, but not in the cingulate cortex. Induction of Alz-50 IR also was progressive but the morphology and distribution was different from tau-2 IR. Beaded fibers with occasional neuronal perikarya were visualized with Alz-50, and the IR was primarily observed in the ipsilateral amygdala. In addition, amygdaloid injections of A beta 25-35 induced reactive astrocytosis, particularly in the ipsilateral hippocampus at 32 days postoperatively. To our knowledge, this is the first study to show that in vivo injections of A beta 25-35 induce progressive transsynaptic cytoskeletal and astrogliotic reactions, that gradually spread from the area of injection to brain regions that have prominent efferent connections with that area. These findings also suggest a direct association between plaque and tangle formation in Alzheimer's disease
PMID: 9363801
ISSN: 0197-4580
CID: 23488

beta-Amyloid 25-35 and/or quinolinic acid injections into the basal forebrain of young male Fischer-344 rats: behavioral, neurochemical and histological effects

Sigurdsson EM; Hejna MJ; Lee JM; Lorens SA
beta-Amyloid peptides have been shown to potentiate the neurotoxic effect of excitatory amino acids in vitro. In order to determine if this occurs in vivo, four experiments were performed. We injected beta-amyloid 25-35 (beta A 25-35) and/or quinolinic acid (QA) bilaterally into the ventral pallidum/substantia innominata (VP/SI) of rats. Control rats received vehicle infusions. A high dose of QA (75.0 nmol/3 microliters) increased open field activity and impaired spatial learning in the Morris water maze, but did not affect the acquisition of a one-way conditioned avoidance response. These changes were associated with histological evidence of neurotoxicity and a reduction in amygdaloid but not frontal cortical or hippocampal choline acetyltransferase (ChAT) activity. A lower dose of QA (37.5 nmol/3 microliters) produced no behavioral effects. It reduced amygdaloid ChAT activity to a lesser extent than the higher dose (15% vs. 29-37%), and caused less histological damage. beta A 25-35 (1.0 or 8.0 nmol/3 microliters) failed to produce behavioral, histological or neurochemical signs of toxicity. Neither dose of beta A 25-35 potentiated the effects of QA (37.5 nmol) on behavior or amygdaloid ChAT activity, and did not appear to increase the histological damage caused by QA. These results suggest that in vivo beta A 25-35 is not neurotoxic and does not potentiate the neurotoxicity of QA in the VP/SI. Further, the histological effects of a high dose of beta A 25-35 (8.0 nmol/3 microliters; a cavitation containing a Congo red positive proteinaceous material) are quite distinct from those produced by a high dose of QA (75.0 nmol/3 microliters; widespread neuronal loss and gliosis)
PMID: 8788867
ISSN: 0166-4328
CID: 23490