Searched for: in-biosketch:yes
person:sodicd01
Maximum efficiency radiofrequency shimming: Theory and initial application for hip imaging at 7 tesla
Deniz, Cem Murat; Brown, Ryan; Lattanzi, Riccardo; Alon, Leeor; Sodickson, Daniel K; Zhu, Yudong
Radiofrequency shimming with multiple channel excitation has been proposed to increase the transverse magnetic field uniformity and reduce specific absorption rate at high magnetic field strengths (>/=7 T) where high-frequency effects can make traditional single channel volume coils unsuitable for transmission. In the case of deep anatomic regions and power-demanding pulse sequences, optimization of transmit efficiency may be a more critical requirement than homogeneity per se. This work introduces a novel method to maximize transmit efficiency using multiple channel excitation and radiofrequency shimming. Shimming weights are calculated in order to obtain the lowest possible net radiofrequency power deposition into the subject for a given transverse magnetic field strength. The method was demonstrated in imaging studies of articular cartilage of the hip joint at 7 T. We show that the new radiofrequency shimming method can enable reduction in power deposition while maintaining an average flip angle or adiabatic condition in the hip cartilage. Building upon the improved shimming, we further show that the signal-to-noise ratio in hip cartilage at 7 T can be substantially greater than that at 3 T, illustrating the potential benefits of high field hip imaging. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.
PMCID:3478493
PMID: 22714835
ISSN: 0740-3194
CID: 221072
Method for in situ characterization of radiofrequency heating in parallel transmit MRI
Alon, Leeor; Deniz, Cem Murat; Brown, Ryan; Sodickson, Daniel K; Zhu, Yudong
In ultra-high-field magnetic resonance imaging, parallel radiofrequency (RF) transmission presents both opportunities and challenges for specific absorption rate management. On one hand, parallel transmission provides flexibility in tailoring electric fields in the body while facilitating magnetization profile control. On the other hand, it increases the complexity of energy deposition as well as possibly exacerbating local specific absorption rate by improper design or delivery of RF pulses. This study shows that the information needed to characterize RF heating in parallel transmission is contained within a local power correlation matrix. Building upon a calibration scheme involving a finite number of magnetic resonance thermometry measurements, this work establishes a way of estimating the local power correlation matrix. Determination of this matrix allows prediction of temperature change for an arbitrary parallel transmit RF pulse. In the case of a three transmit coil MR experiment in a phantom, determination and validation of the power correlation matrix were conducted in less than 200 min with induced temperature changes of <4 degrees C. Further optimization and adaptation are possible, and simulations evaluating potential feasibility for in vivo use are presented. The method allows general characteristics indicative of RF coil/pulse safety determined in situ. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.
PMCID:3449021
PMID: 22714806
ISSN: 0740-3194
CID: 221082
Highly Accelerated Single Breath-Hold Noncontrast Thoracic MRA: Evaluation in a Clinical Population
Lim, Ruth P; Winchester, Priscilla A; Bruno, Mary T; Xu, Jian; Storey, Pippa; McGorty, Kellyanne; Sodickson, Daniel K; Srichai, Monvadi B
OBJECTIVES: The objective of this study was to evaluate the performance of a highly accelerated breath-hold 3-dimensional noncontrast-enhanced steady-state free precession thoracic magnetic resonance angiography (NC-MRA) technique in a clinical population, including assessment of image quality, aortic dimensions, and aortic pathology, compared with electrocardiographically gated gadolinium-enhanced MRA (Gd-MRA). MATERIALS AND METHODS: After approval from the institution board and informed consent were obtained, 30 patients (22 men; mean age, 53.4 years) with known or suspected aortic pathology were imaged with NC-MRA followed by Gd-MRA at a single examination at 1.5 T. Images were made anonymous and reviewed by 2 readers for aortic pathology and diagnostic confidence on a 5-point scale (1, worst; 5, best) on a patient basis. Image quality and artifacts were also evaluated in 10 vascular segments: aortic annulus, sinuses of Valsalva, sinotubular junction, ascending aorta, aortic arch, descending aorta, diaphragmatic aorta, great vessel origins, and the left main and right coronary artery origins. Finally, aortic dimensions were measured in each of the 7 aortic segments. The Wilcoxon signed rank test was used to compare diagnostic confidence, image quality, and artifact scores between NC-MRA and Gd-MRA. The paired Student t test and Bland-Altman analysis were used for comparison of aortic dimensions. RESULTS: All patients completed NC-MRA and Gd-MRA successfully. Vascular pathologic findings were concordant with Gd-MRA in 29 of 30 (96.7%) patients and 28 of 30 (93.3%) patients for readers 1 and 2, respectively, with high diagnostic confidence (mean [SD], 4.35 [0.77]) not significantly different from Gd-MRA (4.38 [0.64]; P = 0.74). The image quality and artifact scores were comparable with Gd-MRA in most vascular segments. Notable differences were observed at the ascending aorta, where Gd-MRA had superior image quality (4.13 [0.73]) compared with NC-MRA (3.80 [0.88]; P = 0.028), and at the coronary artery origins where NC-MRA was considered superior (NC-MRA vs Gd-MRA, 3.38 [1.47] vs 2.78 [1.21] for the left main artery and NC-MRA vs Gd-MRA, 3.55 [1.40] vs 2.32 [1.16] for the right coronary artery; P < 0.05, both comparisons). The aortic dimensions were comparable, with the only significant difference observed at the ascending aorta, where NC-MRA dimension (4.05 [0.76]) was less than 1 mm smaller than that of Gd-MRA (4.12 [0.7]; P = 0.043). CONCLUSIONS: Breath-hold NC-MRA of the thoracic aorta yields good image quality, comparable to Gd-MRA, with high accuracy for aortic dimension and pathology. It can be considered as an alternative to Gd-MRA in patients with relative contraindications to gadolinium contrast or problems with intravenous access.
PMID: 23249647
ISSN: 0020-9996
CID: 214002
Dynamic magnetic resonance imaging of the pharynx during deglutition
Amin, Milan R; Achlatis, Stratos; Lazarus, Cathy L; Branski, Ryan C; Storey, Pippa; Praminik, Bidyut; Fang, Yixin; Sodickson, Daniel K
OBJECTIVES: We utilized dynamic magnetic resonance imaging to visualize the pharynx and upper esophageal segment in normal, healthy subjects. METHODS: A 3-T scanner with a 4-channel head coil and a dual-channel neck coil was used to obtain high-speed magnetic resonance images of subjects who were swallowing liquids and pudding. Ninety sequential images were acquired with a temporal resolution of 113 ms. Imaging was performed in axial planes at the levels of the oropharynx and the pharyngoesophageal segment. The images were then analyzed for variables related to alterations in the area of the pharynx and pharyngoesophageal segment during swallowing, as well as temporal measures related to these structures. RESULTS: All subjects tolerated the study protocol without complaint. Changes in the area of the pharyngeal wall lumen and temporal measurements were consistent within and between subjects. The inter-rater and intra-rater reliabilities for the measurement tool were excellent. CONCLUSIONS: Dynamic magnetic resonance imaging of the swallow sequence is both feasible and reliable and may eventually complement currently used diagnostic methods, as it adds substantive information.
PMCID:4012293
PMID: 23577565
ISSN: 0003-4894
CID: 288652
Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling
Chandarana, Hersh; Feng, Li; Block, Tobias K; Rosenkrantz, Andrew B; Lim, Ruth P; Babb, James S; Sodickson, Daniel K; Otazo, Ricardo
OBJECTIVE: The objectives of this study were to develop a new method for free-breathing contrast-enhanced multiphase liver magnetic resonance imaging (MRI) using a combination of compressed sensing, parallel imaging, and radial k-space sampling and to demonstrate the feasibility of this method by performing image quality comparison with breath-hold cartesian T1-weighted (conventional) postcontrast acquisitions in healthy participants. MATERIALS AND METHODS: This Health Insurance Portability and Accountability Act-compliant prospective study received approval from the institutional review board. Eight participants underwent 3 separate contrast-enhanced fat-saturated T1-weighted gradient-echo MRI examinations with matching imaging parameters: conventional breath-hold examination with cartesian k-space sampling volumetric interpolate breath hold examination (BH-VIBE) and free-breathing acquisitions with interleaved angle-bisection and continuous golden-angle radial sampling schemes. Interleaved angle-bisection and golden-angle data from each 100 consecutive spokes were reconstructed using a combination of compressed sensing and parallel imaging (interleaved-angle radial sparse parallel [IARASP] and golden-angle radial sparse parallel [GRASP]) to generate multiple postcontrast phases.Arterial- and venous-phase BH-VIBE, IARASP, and GRASP reconstructions were evaluated by 2 radiologists in a blinded fashion. The readers independently assessed quality of enhancement (QE), overall image quality (IQ), and other parameters of image quality on a 5-point scale, with the highest score indicating the most desirable examination. Mixed model analysis of variance was used to compare each measure of image quality. RESULTS: Images of BH-VIBE and GRASP had significantly higher QE and IQ values compared with IARASP for both phases (P < 0.05). The differences in QE between BH-VIBE and GRASP for the arterial and venous phases were not significant (P > 0.05). Although GRASP had lower IQ score compared with BH-VIBE for the arterial (3.9 vs 4.8; P < 0.0001) and venous (4.2 vs 4.8; P = 0.005) phases, GRASP received IQ scores of 3 or more in all participants, which was consistent with acceptable or better diagnostic image quality. CONCLUSION: Contrast-enhanced multiphase liver MRI of diagnostic quality can be performed during free breathing using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling.
PMCID:3833720
PMID: 23192165
ISSN: 0020-9996
CID: 202342
Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI
Fleysher, Lazar; Oesingmann, Niels; Brown, Ryan; Sodickson, Daniel K; Wiggins, Graham C; Inglese, Matilde
In vivo sodium magnetic resonance imaging (MRI) measures tissue sodium content in living human brain but current methods do not allow noninvasive quantitative assessment of intracellular sodium concentration (ISC) - the most useful marker of tissue viability. In this study, we report the first noninvasive quantitative in vivo measurement of ISC and intracellular sodium volume fraction (ISVF) in healthy human brain, made possible by measuring tissue sodium concentration (TSC) and intracellular sodium molar fraction (ISMF) at ultra-high field MRI. The method uses single-quantum (SQ) and triple-quantum filtered (TQF) imaging at 7 Tesla to separate intra- and extracellular sodium signals and provide quantification of ISMF, ISC and ISVF. This novel method allows noninvasive quantitative measurement of ISC and ISVF, opening many possibilities for structural and functional metabolic studies in healthy and diseased brains
PMCID:3691850
PMID: 22714793
ISSN: 0952-3480
CID: 216202
RF-emission device safety testing using MRI
Alon, L; Cho, GY; Yang, X; Zhu, Y; Sodickson, DK; Deniz, CM
Radiofrequency (RF) emitting wireless devices such as mobile phones are required to undergo standardized safety testing prior to entering the consumer market. Strict regulations are imposed on the amount of RF energy these devices are allowed to emit to prevent excessive deposition of RF energy into the body. In this work, a novel safety evaluation test for wireless devices using magnetic resonance thermometry is proposed.
SCOPUS:84894165647
ISSN: 1522-3965
CID: 843672
Accelerated 3D radial imaging with 3D variational regularization [Meeting Abstract]
Knoll, Florian; Block, Kai Tobias; Bredies, Kristian; Diwoky, Clemens; Axel, Leon; Sodickson, Daniel K; Stollberger, Rudolf
ORIGINAL:0014699
ISSN: 1524-6965
CID: 4534492
Default-mode network disruption in mild traumatic brain injury
Zhou, Yongxia; Milham, Michael P; Lui, Yvonne W; Miles, Laura; Reaume, Joseph; Sodickson, Daniel K; Grossman, Robert I; Ge, Yulin
Purpose: To investigate the integrity of the default-mode network (DMN) by using independent component analysis (ICA) methods in patients shortly after mild traumatic brain injury (MTBI) and healthy control subjects, and to correlate DMN connectivity changes with neurocognitive tests and clinical symptoms. Materials and Methods: This study was approved by the institutional review board and complied with HIPAA regulations. Twenty-three patients with MTBI who had posttraumatic symptoms shortly after injury (<2 months) and 18 age-matched healthy control subjects were included in this study. Resting-state functional magnetic resonance imaging was performed at 3 T to characterize the DMN by using ICA methods, including a single-participant ICA on the basis of a comprehensive template from core seeds in the posterior cingulate cortex (PCC) and medial prefrontal cortex (MPFC) nodes. ICA z images of DMN components were compared between the two groups and correlated with neurocognitive tests and clinical performance in patients by using Pearson and Spearman rank correlation. Results: When compared with the control subjects, there was significantly reduced connectivity in the PCC and parietal regions and increased frontal connectivity around the MPFC in patients with MTBI (P < .01). These frontoposterior opposing changes within the DMN were significantly correlated (r = -0.44, P = .03). The reduced posterior connectivity correlated positively with neurocognitive dysfunction (eg, cognitive flexibility), while the increased frontal connectivity correlated negatively with posttraumatic symptoms (ie, depression, anxiety, fatigue, and postconcussion syndrome). Conclusion: These results showed abnormal DMN connectivity patterns in patients with MTBI, which may provide insight into how neuronal communication and information integration are disrupted among DMN key structures after mild head injury. (c) RSNA, 2012.
PMCID:3504316
PMID: 23175546
ISSN: 0033-8419
CID: 185072
Ideal current patterns yielding optimal signal-to-noise ratio and specific absorption rate in magnetic resonance imaging: Computational methods and physical insights
Lattanzi R; Sodickson DK
At high and ultra-high magnetic field strengths, understanding interactions between tissues and the electromagnetic fields generated by radiofrequency coils becomes crucial for safe and effective coil design as well as for insight into limits of performance. In this work, we present a rigorous electrodynamic modeling framework, using dyadic Green's functions, to derive the electromagnetic field in homogeneous spherical and cylindrical samples resulting from arbitrary surface currents in the presence or absence of a surrounding radiofrequency shield. We show how to calculate ideal current patterns that result in the highest possible signal-to-noise ratio (ultimate intrinsic signal-to-noise ratio) or the lowest possible radiofrequency power deposition (ultimate intrinsic specific absorption rate) compatible with electrodynamic principles. We identify familiar coil designs within optimal current patterns at low to moderate field strength, thereby establishing and explaining graphically the near-optimality of traditional surface and volume quadrature designs. We also document the emergence of less familiar patterns, e.g., involving substantial electric- as well as magnetic-dipole contributions, at high field strength. Performance comparisons with particular coil array configurations demonstrate that optimal performance may be approached with finite arrays if ideal current patterns are used as a guide for coil design. Magn Reson Med, 2011. (c) 2011 Wiley Periodicals, Inc
PMCID:3374920
PMID: 22127735
ISSN: 1522-2594
CID: 149835