Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:delmam01

Total Results:

169


Structure of connexin43 and its regulation by pHi

Morley GE; Ek-Vitorin JF; Taffet SM; Delmar M
Electrical coupling in the heart provides an effective mechanism for propagating the cardiac action potential efficiently throughout the entire heart. Cells within the heart are electrically coupled through specialized membrane channels called gap junctions. Studies have shown that gap junctions are dynamic, carefully regulated channels that are important for normal cardiogenesis. We have recently been interested in the molecular mechanisms by which intracellular acidification leads to gap junction channel closure. Previous results in this lab have shown that truncation of the carboxyl terminal (CT) of connexin43 (Cx43) does not interfere with functional channel expression. Further, the pH-dependent closure of Cx43 channels is significantly impaired by removal of this region of the protein. Other studies have shown that the CT is capable of interacting with its receptor even when not covalently attached to the channel protein. From these data we have proposed a particle-receptor model to explain the pH-dependent closure of Cx43 gap junction channels. Detailed analysis of the CT has revealed interesting new information regarding its possible structure. Here we review the most recent studies that have contributed to our understanding of the molecular mechanisms of regulation of the cardiac gap protein Cx43
PMID: 9261721
ISSN: 1045-3873
CID: 32717

PH regulation of connexin43: molecular analysis of the gating particle

Ek-Vitorin JF; Calero G; Morley GE; Coombs W; Taffet SM; Delmar M
Gap junction channels allow for the passage of ions and small molecules between neighboring cells. These channels are formed by multimers of an integral membrane protein named connexin. In the heart and other tissues, the most abundant connexin is a 43-kDa, 382-amino acid protein termed connexin43 (Cx43). A characteristic property of connexin channels is that they close upon acidification of the intracellular space. Previous studies have shown that truncation of the carboxyl terminal of Cx43 impairs pH sensitivity. In the present study, we have used a combination of optical, electrophysiological, and molecular biological techniques and the oocyte expression system to further localize the regions of the carboxyl terminal that are involved in pH regulation of Cx43 channels. Our results show that regions 261-300 and 374-382 are essential components of a pH-dependent 'gating particle,' which is responsible for acidification-induced uncoupling of Cx43-expressing cells. Regions 261-300 and 374-382 seem to be interdependent. The function of region 261-300 may be related to the presence of a poly-proline repeat between amino acids 274 and 285. Furthermore, site-directed mutagenesis studies show that the function of region 374-382 is not directly related to its net balance of charges, although mutation of only one amino acid (aspartate 379) for asparagine impairs pH sensitivity to the same extent as truncation of the carboxyl terminal domain (from amino acid 257). The mutation in which serine 364 is substituted for proline, which has been associated with some cases of cardiac congenital malformations in humans, also disrupts the pH gating of Cx43, although deletion of amino acids 364-373 has no effect on acidification-induced uncoupling. These results provide new insight into the molecular mechanisms responsible for acidification-induced uncoupling of gap junction channels in the heart and in other Cx43-expressing structures
PMCID:1233595
PMID: 8874002
ISSN: 0006-3495
CID: 32718

Intramolecular interactions mediate pH regulation of connexin43 channels

Morley GE; Taffet SM; Delmar M
We have previously proposed that acidification-induced regulation of the cardiac gap junction protein connexin43 (Cx43) may be modeled as a particle-receptor interaction between two separate domains of Cx43: the carboxyl terminal (acting as a particle), and a region including histidine 95 (acting as a receptor). Accordingly, intracellular acidification would lead to particle-receptor binding, thus closing the channel. A premise of the model is that the particle can bind its receptor, even if the particle is not covalently bound to the rest of the protein. The latter hypothesis was tested in antisense-injected Xenopus oocyte pairs coexpressing mRNA for a pH-insensitive Cx43 mutant truncated at amino acid 257 (i.e., M257) and mRNA coding for the carboxyl terminal region (residues 259-382). Intracellular pH (pHo) was recorded using the dextran form of the proton-sensitive dye seminaphthorhodafluor (SNARF). Junctional conductance (Gj) was measured with the dual voltage clamp technique. Wild-type Cx43 channels showed their characteristic pH sensitivity. M257 channels were not pH sensitive (pHo tested: 7.2 to 6.4). However, pH sensitivity was restored when the pH-insensitive channel (M257) was coexpressed with mRNA coding for the carboxyl terminal. Furthermore, coexpression of the carboxyl terminal of Cx43 enhanced the pH sensitivity of an otherwise less pH-sensitive connexin (Cx32). These data are consistent with a model of intramolecular interactions in which the carboxyl terminal acts as an independent domain that, under the appropriate conditions, binds to a separate region of the protein and closes the channel. These interactions may be direct (as in the ball-and-chain mechanism of voltage-dependent gating of potassium channels) or mediated through an intermediary molecule. The data further suggest that the region of Cx43 that acts as a receptor for the particle is conserved among connexins. A similar molecular mechanism may mediate chemical regulation of other channel proteins
PMCID:1225055
PMID: 8785285
ISSN: 0006-3495
CID: 32719

Characterization of an E4031-sensitive potassium current in quiescent AT-1 cells

Liu, Y; Taffet, S M; Anumonwo, J M; Delmar, M
INTRODUCTION: A cardiac culture cell line (AT-1) recently has been generated from transgenic mice. Initial studies have yielded opposing results as to the nature of the major repolarizing current(s) in these cells. The present study describes the ion selectivity, voltage dependence, and E4031 sensitivity of the major time-dependent outward current present in AT-1 cells. In addition, we have determined whether an outward current with the characteristics we observed could be capable of modulating action potential duration in a frequency-dependent manner (for stimulation cycle lengths between 250 and 1000 msec). METHODS AND RESULTS: Action potentials and membrane currents were recorded from nonconfluent cultures of quiescent AT-1 cells using the 'perforated patch' technique. AT-1 cells showed a round appearance 1 or 2 days after plating. An E4031-insensitive transient outward current seemed to be absent in these cells. The main time-dependent outward current was a rapidly activating and rectifying potassium current with properties similar to those of IKr. Most of the potassium current was sensitive to the benzenesulfonamide E4031 (5 microM). The same concentration of E4031 led to a 38% increase in action potential duration. Action potential parameters were independent of the stimulation cycle length within the range of 250 to 1000 msec, thus suggesting that the membrane currents involved in the action potential of AT-1 cells are completely reset within a diastolic interval of approximately 150 msec. CONCLUSION: AT-1 cells present a unique electrophysiologic phenotype, which is clearly different from that reported for freshly dissociated adult atrial or ventricular myocytes from other species. AT-1 cells may be a good model to study IKr, since there seems to be minimal contamination by other outward conductances (such as IKs). In addition, the feasibility of culturing AT-1 cells provides us with a system where electrophysiologic experiments on IKr currents could be combined with biochemical or molecular biological studies requiring significant periods of incubation in a cell culture system
PMID: 7697204
ISSN: 1045-3873
CID: 113888

Role of histidine 95 on pH gating of the cardiac gap junction protein connexin43

Ek, J F; Delmar, M; Perzova, R; Taffet, S M
We have studied the role of histidine 95 (H95) on the pH gating of the cardiac gap junction protein connexin43 (Cx43). Wild-type and mutant rat cardiac Cx43 channels were expressed in antisense-injected Xenopus oocytes. Junctional conductance was measured using the dual voltage-clamp technique, and intracellular acidification was induced by superfusion with a sodium acetate-containing solution balanced at a pH of 6.2. H95 was substituted by other amino acids by use of oligonucleotide-directed site-specific mutagenesis. Replacing H95 for the hydrophobic residues methionine or phenylalanine, for the charged basic residue arginine, or for the noncharged residue glutamine (H95Q) yielded nonfunctional channels. Functional expression of H95Q was rescued by placing a histidine residue in position 93 (H95Q-L93H), 94 (H95Q-A94H), or 97 (H95Q-F97H) but not in position 96. Further experiments showed that replacing H95 with either aspartate (an acidic residue) or tyrosine (a polar uncharged residue) led to the expression of functional channels with a reduced susceptibility to acidification-induced uncoupling, whereas lysine (a basic residue) was more susceptible to uncoupling than the wild-type protein. The susceptibility to acidification-induced uncoupling was enhanced for the H95Q-A94H mutant when compared with the wild-type mutant, but it was significantly reduced when histidine was placed at position 93 (H95Q-L93H). Our data indicate that a properly placed histidine residue is an important structural element for functional expression as well as for pH regulation of Cx43. The results suggest that the importance of H95 on pH gating may be associated with a possible protonation of this residue on acidification of the intracellular environment.(ABSTRACT TRUNCATED AT 250 WORDS)
PMID: 8187275
ISSN: 0009-7330
CID: 113889

A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: the carboxyl tail length

Liu, S; Taffet, S; Stoner, L; Delmar, M; Vallano, M L; Jalife, J
The regulation of junctional conductance (Gi) of the major cardiac (connexin43; Cx43) and liver (connexin32; Cx32) gap junction proteins by intracellular hydrogen ion concentration (pH; pHi), as well as well as that of a truncation mutant of Cx43 (M257) with 125 amino acids deleted from the COOH terminus, was characterized in pairs of Xenopus laevis oocytes expressing homologous channels. Oocytes were injected with 40 nl mRNAs (2 micrograms/microliters) encoding the respective proteins; subsequently, cells were stripped, paired, and incubated for 20-24 h. Gj was measured in oocyte pairs using the dual electrode voltage-clamp technique, while pHi was recorded simultaneously in the unstimulated cell by means of a proton-selective microelectrode. Because initial experiments showed that the pH-sensitive microelectrode responded more appropriately to acetate than to CO2 acidification, oocytes expressing Cx32 and wild type and mutant Cx43 were exposed to a sodium acetate saline, which was balanced to various levels of pH using NaOH and HCl. pH was changed in a stepwise manner, and quasi-steady-state Gj -pHi relationships were constructed from data collected at each step after both Gj and pHi had reached their respective asymptotic values. A moderate but significant increase of Gj was observed in Cx43 pairs as pHi decreased from 7.2 to 6.8. In both Cx32 and M257 pairs, Gj increased significantly over a wider pH range (i.e., between 7.2 and 6.3). Further acidification reversibly reduced Gj to zero in all oocyte pairs. Pooled data for the individual connexins obtained during uncoupling were fitted by the Hill equation; apparent 50%-maximum (pK;pKa) values were 6.6 and 6.1 for Cx43 and Cx32, respectively, and Hill coefficients were 4.2 for Cx43 and 6.2 for Cx32. Like Cx32, M257 had a more acidic pKa (6.1) and steeper Hill coefficient (6.0) than wild type Cx43. The pKa and Hill coefficient of M257 were very similar to those of Cx32. These experiments provide the first direct comparison of the effects of acidification on Gj in oocyte pairs expressing Cx43 or Cx32. The results indicate that structural differences in the connexins are the basis for their unequal sensitivity to intracellular acidification in vivo. The data further suggest that a common pH gating mechanism may exist between amino acid residues 1 and 256 in both Cx32 and Cx43. However, the longer carboxyl tail of Cx43 relative to Cx32 or M257 provides additional means to facilitate acidification-induced gating; its presence shifts the pKa from 6.1 (Cx32 and M257) to 6.6 (Cx43) in the conductance of these channels
PMCID:1262467
PMID: 8391867
ISSN: 0006-3495
CID: 113890

Effects of 2,4-dinitrophenol or low [ATP]i on cell excitability and action potential propagation in guinea pig ventricular myocytes

Morley GE; Anumonwo JM; Delmar M
Inhibition of aerobic metabolism leads to a major disruption of cardiac cell homeostasis. The purpose of the present study was twofold: 1) We determined the relative importance of junctional and nonjunctional membrane resistance (Rj and Rm, respectively) in the development of propagation failure during inhibition of aerobic metabolism in guinea pig ventricular cell pairs. 2) We used the patch-action potential clamp technique in single ventricular myocytes to study some of the properties of the membrane channels that are responsible for shortening of action potential duration and eventual failure of cell excitation after metabolic blockade. In most experiments, whole-cell patch pipettes were filled with a solution containing 1 mM EGTA, 5 mM HEPES, and 5 mM ATP. Our results in cell pairs showed that pharmacological inhibition of aerobic metabolism with the mitochondrial uncoupler 2,4-dinitrophenol (DNP) led to a drop in Rm followed by an increase in Rj. The increase in Rj was not sufficient to cause a measurable delay in cell-to-cell propagation, whereas the drop in Rm consistently led to failure of cell excitation. Similar results were obtained in additional experiments in which the EGTA concentration in the pipette was reduced to 50 microM. Similar results were also obtained by loading the recording patch pipettes with a solution containing only 0.1 mM ATP. Our patch-action potential clamp experiments, on the other hand, revealed that DNP induced the opening of time- and voltage-independent membrane channels, with a unitary conductance of 23 pS. The channels allowed for the passage of outward current in the voltage range of the action potential, and the increase in membrane patch conductance correlated with the observed shortening of action potential duration during DNP superfusion. Our experiments provide the first simultaneous recordings of action potentials and DNP-induced channel currents in guinea pig ventricular myocytes. Overall, the data provide new evidence for the understanding of the cellular and subcellular mechanisms involved in the development of slow conduction velocity and propagation block after metabolic blockade
PMID: 1516157
ISSN: 0009-7330
CID: 32721

Immunolocalization and expression of functional and nonfunctional cell-to-cell channels from wild-type and mutant rat heart connexin43 cDNA

Dunham, B; Liu, S; Taffet, S; Trabka-Janik, E; Delmar, M; Petryshyn, R; Zheng, S; Perzova, R; Vallano, M L
The carboxyl terminal cytoplasmic domain of distinct gap junction proteins may play an important role in assembly of functional channels as well as differential responsiveness to pH, voltage, and intracellular second messengers. Oligonucleotide-directed site-specific mutagenesis in a paired Xenopus laevis oocyte expression system was used to examine the expression of mRNAs encoding wild-type and carboxyl terminal mutant connexin43 (Cx43) proteins. Oocytes were stripped, injected with mRNA or distilled water (dH2O), preincubated for 16-20 hours, and then paired for 5-10 hours; this process was followed by electrophysiological recording using the dual voltage-clamp technique. Initial experiments compared the relative junctional conductances (Gjs) in oocyte pairs expressing Cx43 (382 amino acid residues) and two truncated mutants lacking most or a portion of the cytoplasmic carboxyl terminal. The shortest mutant (M241) contained 240 amino acid residues and was devoid of all phosphorylatable serine residues in the cytoplasmic tail; its length approximated the length of liver connexin26. The longest mutant (M257) tested contained 256 amino acid residues, including two serine residues. Oocyte pairs expressing M241 yielded a Gj similar to that of oocytes injected with dH2O, whereas M257 yielded a Gj similar to that of oocytes injected with Cx43. Immunoprecipitation studies showed that Cx43, M257, and M241 proteins were readily detectable in oocytes injected with their respective mRNAs, indicating that the lack of Gj observed with the M241 mRNA was not due to reduced translation. Immunocytochemical studies revealed that wild-type and both truncated mutants were localized to the area of cell-to-cell contact between the paired oocytes, indicating that protein targeting to the membrane was not inhibited in oocytes injected with M241 mRNA. Oocyte pairs expressing mutants in which serine residues were replaced with nonphosphorylatable amino acids (serine codon No. 255 AGC was converted to GCC, alanine, designated as M255S----A, and serine codon No. 244 AGC was converted to GGC, glycine, designated as M244S----G) showed Gjs similar to M257, indicating that these serine residues and, by inference, their phosphorylation state are not critical for expression of functional channels. The importance of the length of the carboxyl terminus was assessed by comparing the Gjs in a series of mutants that were intermediate in length between M257 and M241. Gradual shortening of the carboxyl terminus produced a gradual reduction of Gj relative to M257. However, simple deletion of amino acid residues 241-257 from the wild-type Cx43 did not affect Gj relative to M257.(ABSTRACT TRUNCATED AT 400 WORDS)
PMID: 1315637
ISSN: 0009-7330
CID: 113887

Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes

Ibarra J; Morley GE; Delmar M
The potassium selective, inward rectifier current (IK1) is known to be responsible for maintaining the resting membrane potential of quiescent ventricular myocytes. However, the contribution of this current to the different phases of the cardiac action potential has not been adequately established. In the present study, we have used the action potential clamp (APC) technique to characterize the dynamic changes of a cesium-sensitive (i.e., Ik1) current which occur during the action potential. Our results show that (a) Ik1 is present during depolarization, as well as in the final phase of repolarization of the cardiac action potential. (b) The current reaches the zone of inward-going rectification before the regenerative action potential ensues. (c) The maximal outward current amplitude during repolarization is significantly lower than during depolarization, which supports the hypothesis that in adult guinea pig ventricular myocytes, Ik1 rectification is accentuated during the action potential plateau. Our results stress the importance of Ik1 in the modulation of cell excitability in the ventricular myocyte
PMCID:1260210
PMID: 1777570
ISSN: 0006-3495
CID: 32722