Searched for: in-biosketch:yes
person:torrev02
A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence
Torres, Victor J; Stauff, Devin L; Pishchany, Gleb; Bezbradica, Jelena S; Gordy, Laura E; Iturregui, Juan; Anderson, Kelsi L; Dunman, Paul M; Joyce, Sebastian; Skaar, Eric P
Staphylococcus aureus, a bacterium responsible for tremendous morbidity and mortality, exists as a harmless commensal in approximately 25% of humans. Identifying the molecular machinery activated upon infection is central to understanding staphylococcal pathogenesis. We describe the heme sensor system (HssRS) that responds to heme exposure and activates expression of the heme-regulated transporter (HrtAB). Inactivation of the Hss or Hrt systems leads to increased virulence in a vertebrate infection model, a phenotype that is associated with an inhibited innate immune response. We suggest that the coordinated activity of Hss and Hrt allows S. aureus to sense internal host tissues, resulting in tempered virulence to avoid excessive host tissue damage. Further, genomic analyses have identified orthologous Hss and Hrt systems in Bacillus anthracis, Listeria monocytogenes, and Enterococcus faecalis, suggesting a conserved regulatory system by which Gram-positive pathogens sense heme as a molecular marker of internal host tissue and modulate virulence
PMCID:2083280
PMID: 18005689
ISSN: 1934-6069
CID: 90839
Serological Assays for Identification of Human Gastric Colonization by Helicobacter pylori Strains Expressing VacA m1 or m2
Ghose, Chandrabali; Perez-Perez, Guillermo I; Torres, Victor J; Crosatti, Marialuisa; Nomura, Abraham; Peek, Richard M Jr; Cover, Timothy L; Francois, Fritz; Blaser, Martin J
The Helicobacter pylori vacA gene encodes a secreted protein (VacA) that alters the function of gastric epithelial cells and T lymphocytes. H. pylori strains containing particular vacA alleles are associated with differential risk of disease. Because the VacA midregion may exist as one of two major types, m1 or m2, serologic responses may potentially be used to differentiate between patients colonized with vacA m1- or vacA m2-positive H. pylori strains. In this study, we examined the utility of specific antigens from the m regions of VacA as allele-specific diagnostic antigens. We report that serological responses to P44M1, an H. pylori m1-specific antigen, are observed predominantly in patients colonized with m1-positive strains, whereas responses to VacA m2 antigens, P48M2 and P55M2, are observed in patients colonized with either m1- or m2-positive strains. In an Asian-American population, serologic responses to VacA m region-specific antigens were not able to predict the risk of development of gastric cancer
PMCID:1865612
PMID: 17267587
ISSN: 1556-6811
CID: 71774
Resistance of primary murine CD4+ T cells to Helicobacter pylori vacuolating cytotoxin
Algood, Holly M Scott; Torres, Victor J; Unutmaz, Derya; Cover, Timothy L
Persistent colonization of the human stomach by Helicobacter pylori is a risk factor for the development of gastric cancer and peptic ulcer disease. H. pylori secretes a toxin, VacA, that targets human gastric epithelial cells and T lymphocytes and enhances the ability of H. pylori to colonize the stomach in a mouse model. To examine how VacA contributes to H. pylori colonization of the mouse stomach, we investigated whether murine T lymphocytes were susceptible to VacA activity. VacA inhibited interleukin-2 (IL-2) production by a murine T-cell line (LBRM-33), similar to its effects on a human T-cell line (Jurkat), but did not inhibit IL-2 production by primary murine splenocytes or CD4+ T cells. VacA inhibited activation-induced proliferation of primary human CD4+ T cells but did not inhibit the proliferation of primary murine CD4+ T cells. Flow cytometry studies indicated that the levels of VacA binding to primary murine CD4+ T cells were significantly lower than levels of VacA binding to human CD4+ T cells. This suggests that the resistance of primary murine CD4+ T cells to VacA is attributable, at least in part, to impaired VacA binding to these cells
PMCID:1828377
PMID: 17074854
ISSN: 0019-9567
CID: 71091
Helicobacter pylori VacA toxin inhibits human immunodeficiency virus infection of primary human T cells
Oswald-Richter, Kyra; Torres, Victor J; Sundrud, Mark S; VanCompernolle, Scott E; Cover, Timothy L; Unutmaz, Derya
Human CD4(+) T cells are major targets for human immunodeficiency virus (HIV) infection. Resting T cells are resistant to HIV infection unless activated through the T-cell receptor (TCR) or by cytokine signals. How T-cell signaling promotes susceptibility of T cells to HIV infection remains poorly understood. Here we demonstrate that the VacA toxin produced by Helicobacter pylori can inhibit HIV infection of primary T cells, stimulated through the TCR or by cytokines alone. This activity of VacA was dependent on its ability to form membrane channels. VacA suppressed HIV infection of T cells at a stage after viral entry, post-reverse transcription and pre-two-long-terminal-repeat circle formation, similar to the cytokine signaling inhibitor rapamycin. Mechanistically, neither VacA nor rapamycin inhibited the activation of cytokine signal transduction components (STAT5, p42/44 mitogen-activated protein kinase, or p38), but both blocked activation of key regulatory proteins required for G(1) cell cycle transition. In contrast to rapamycin, VacA did not suppress phosphorylation of p70 S6 kinase but caused mitochondrial depolarization and ATP depletion within primary T cells. These results suggest that VacA inhibits T-cell activation and HIV infection via a novel mechanism. Identifying the host cell targets of VacA could be useful for elucidating the HIV life cycle within primary T cells
PMCID:1642621
PMID: 17005643
ISSN: 0022-538x
CID: 71092
Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization
Torres, Victor J; Pishchany, Gleb; Humayun, Munir; Schneewind, Olaf; Skaar, Eric P
The pathogenesis of human infections caused by the gram-positive microbe Staphylococcus aureus has been previously shown to be reliant on the acquisition of iron from host hemoproteins. The iron-regulated surface determinant system (Isd) encodes a heme transport apparatus containing three cell wall-anchored proteins (IsdA, IsdB, and IsdH) that are exposed on the staphylococcal surface and hence have the potential to interact with human hemoproteins. Here we report that S. aureus can utilize the host hemoproteins hemoglobin and myoglobin, but not hemopexin, as iron sources for bacterial growth. We demonstrate that staphylococci capture hemoglobin on the bacterial surface via IsdB and that inactivation of isdB, but not isdA or isdH, significantly decreases hemoglobin binding to the staphylococcal cell wall and impairs the ability of S. aureus to utilize hemoglobin as an iron source. Stable-isotope-tracking experiments revealed removal of heme iron from hemoglobin and transport of this compound into staphylococci. Importantly, mutants lacking isdB, but not isdH, display a reduction in virulence in a murine model of abscess formation. Thus, IsdB-mediated scavenging of iron from hemoglobin represents an important virulence strategy for S. aureus replication in host tissues and for the establishment of persistent staphylococcal infections
PMCID:1698231
PMID: 17041042
ISSN: 0021-9193
CID: 90833
Random mutagenesis of Helicobacter pylori vacA to identify amino acids essential for vacuolating cytotoxic activity
McClain, Mark S; Czajkowsky, Daniel M; Torres, Victor J; Szabo, Gabor; Shao, Zhifeng; Cover, Timothy L
VacA is a secreted toxin that plays a role in Helicobacter pylori colonization of the stomach and may contribute to the pathogenesis of peptic ulcer disease and gastric cancer. In this study, we analyzed a library of plasmids expressing randomly mutated forms of recombinant VacA and identified 10 mutant VacA proteins that lacked vacuolating cytotoxic activity when added to HeLa cells. The mutations included six single amino acid substitutions within an amino-terminal hydrophobic region and four substitutions outside the amino-terminal hydrophobic region. All 10 mutations mapped within the p33 domain of VacA. By introducing mutations into the H. pylori chromosomal vacA gene, we showed that secreted mutant toxins containing V21L, S25L, G121R, or S246L mutations bound to cells and were internalized but had defects in vacuolating activity. In planar lipid bilayer and membrane depolarization assays, VacA proteins containing V21L and S25L mutations were defective in formation of anion-selective membrane channels, whereas proteins containing G121R or S246L mutations retained channel-forming capacity. These are the first point mutations outside the amino-terminal hydrophobic region that are known to abrogate vacuolating toxin activity. In addition, these are the first examples of mutant VacA proteins that have defects in vacuolating activity despite exhibiting channel activities similar to those of wild-type VacA
PMCID:1695532
PMID: 16954403
ISSN: 0019-9567
CID: 90832
Staphylococcus aureus redirects central metabolism to increase iron availability
Friedman, David B; Stauff, Devin L; Pishchany, Gleb; Whitwell, Corbin W; Torres, Victor J; Skaar, Eric P
Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment) or genetic (Deltafur) alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB), a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus
PMCID:1557832
PMID: 16933993
ISSN: 1553-7374
CID: 90831
Protein-protein interactions among Helicobacter pylori cag proteins
Busler, Valerie J; Torres, Victor J; McClain, Mark S; Tirado, Oscar; Friedman, David B; Cover, Timothy L
Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus
PMCID:1482994
PMID: 16788188
ISSN: 0021-9193
CID: 90829
Mapping of a domain required for protein-protein interactions and inhibitory activity of a Helicobacter pylori dominant-negative VacA mutant protein
Torres, Victor J; McClain, Mark S; Cover, Timothy L
The Helicobacter pylori VacA toxin is an 88-kDa secreted protein that causes multiple alterations in mammalian cells and is considered an important virulence factor in the pathogenesis of peptic ulcer disease and gastric cancer. We have shown previously that a VacA mutant protein lacking amino acids 6 to 27 (Delta6-27p88 VacA) is able to inhibit many activities of wild-type VacA in a dominant-negative manner. Analysis of a panel of C-terminally truncated Delta6-27p88 VacA proteins indicated that a fragment containing amino acids 1 to 478 (Delta6-27p48) exhibited a dominant-negative phenotype similar to that of the full-length Delta6-27p88 VacA protein. In contrast, a shorter VacA fragment lacking amino acids 6 to 27 (Delta6-27p33) did not exhibit detectable inhibitory activity. The Delta6-27p48 protein physically interacted with wild-type p88 VacA, whereas the Delta6-27p33 protein did not. Mutational analysis indicated that amino acids 351 to 360 are required for VacA protein-protein interactions and for dominant-negative inhibitory activity. The C-terminal portion (p55 domain) of wild-type p88 VacA could complement either Delta6-27p33 or Delta(6-27/351-360)p48, reconstituting dominant-negative inhibitory activity. Collectively, our data provide strong evidence that the inhibitory properties of dominant-negative VacA mutant proteins are dependent on interactions between the mutant VacA proteins and wild-type VacA, and they allow mapping of a domain involved in the formation of oligomeric VacA complexes
PMCID:1418911
PMID: 16552038
ISSN: 0019-9567
CID: 90828
Functional properties of the p33 and p55 domains of the Helicobacter pylori vacuolating cytotoxin
Torres, Victor J; Ivie, Susan E; McClain, Mark S; Cover, Timothy L
Helicobacter pylori secretes an 88-kDa vacuolating cytotoxin (VacA) that may contribute to the pathogenesis of peptic ulcer disease and gastric cancer. VacA cytotoxic activity requires assembly of VacA monomers into oligomeric structures, formation of anion-selective membrane channels, and entry of VacA into host cells. In this study, we analyzed the functional properties of recombinant VacA fragments corresponding to two putative VacA domains (designated p33 and p55). Immunoprecipitation experiments indicated that these two domains can interact with each other to form protein complexes. In comparison to the individual VacA domains, a mixture of the p33 and p55 proteins exhibited markedly enhanced binding to the plasma membrane of mammalian cells. Furthermore, internalization of the VacA domains was detected when cells were incubated with the p33/p55 mixture but not when the p33 and p55 proteins were tested individually. Incubation of cells with the p33/p55 mixture resulted in cell vacuolation, whereas the individual domains lacked detectable cytotoxic activity. Interestingly, sequential addition of p55 followed by p33 resulted in VacA internalization and cell vacuolation, whereas sequential addition in the reverse order was ineffective. These results indicate that both the p33 and p55 domains contribute to the binding and internalization of VacA and that both domains are required for vacuolating cytotoxic activity. Reconstitution of toxin activity from two separate domains, as described here for VacA, has rarely been described for pore-forming bacterial toxins, which suggests that VacA is a pore-forming toxin with unique structural properties
PMID: 15817461
ISSN: 0021-9258
CID: 90825