Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:aifani01

Total Results:

237


Dll4-Notch signaling in Flt3-independent dendritic cell development and autoimmunity in mice

Billiard, Fabienne; Lobry, Camille; Darrasse-Jeze, Guillaume; Waite, Janelle; Liu, Xia; Mouquet, Hugo; Danave, Amanda; Tait, Michelle; Idoyaga, Juliana; Leboeuf, Marylene; Kyratsous, Christos A; Burton, Jacquelynn; Kalter, Julie; Klinakis, Apostolos; Zhang, Wen; Thurston, Gavin; Merad, Miriam; Steinman, Ralph M; Murphy, Andrew J; Yancopoulos, George D; Aifantis, Iannis; Skokos, Dimitris
Delta-like ligand 4 (Dll4)-Notch signaling is essential for T cell development and alternative thymic lineage decisions. How Dll4-Notch signaling affects pro-T cell fate and thymic dendritic cell (tDC) development is unknown. We found that Dll4 pharmacological blockade induces accumulation of tDCs and CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg) cells) in the thymic cortex. Both genetic inactivation models and anti-Dll4 antibody (Ab) treatment promote de novo natural T(reg) cell expansion by a DC-dependent mechanism that requires major histocompatibility complex II expression on DCs. Anti-Dll4 treatment converts CD4(-)CD8(-)c-kit(+)CD44(+)CD25(-) (DN1) T cell progenitors to immature DCs that induce ex vivo differentiation of naive CD4(+) T cells into T(reg) cells. Induction of these tolerogenic DN1-derived tDCs and the ensuing expansion of T(reg) cells are Fms-like tyrosine kinase 3 (Flt3) independent, occur in the context of transcriptional up-regulation of PU.1, Irf-4, Irf-8, and CSF-1, genes critical for DC differentiation, and are abrogated in thymectomized mice. Anti-Dll4 treatment fully prevents type 1 diabetes (T1D) via a T(reg) cell-mediated mechanism and inhibits CD8(+) T cell pancreatic islet infiltration. Furthermore, a single injection of anti-Dll4 Ab reverses established T1D. Disease remission and recurrence are correlated with increased T(reg) cell numbers in the pancreas-draining lymph nodes. These results identify Dll4-Notch as a novel Flt3-alternative pathway important for regulating tDC-mediated T(reg) cell homeostasis and autoimmunity.
PMCID:3348095
PMID: 22547652
ISSN: 0022-1007
CID: 167125

Hijacking T Cell Differentiation: New Insights in TLX Function in T-ALL

King, Bryan; Ntziachristos, Panagiotis; Aifantis, Iannis
TLX1 and TLX3 are two closely-related homeobox transcriptional repressors frequently misexpressed and translocated in T cell acute lymphoblastic leukemia (T-ALL). In this issue of Cancer Cell, Dadi et al. provide new insights into how these factors are recruited by ETS-1 to the TCRalpha enhancer and actively repress differentiation.
PMCID:3902167
PMID: 22516255
ISSN: 1535-6108
CID: 165616

Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia

Ntziachristos, Panagiotis; Tsirigos, Aristotelis; Vlierberghe, Pieter Van; Nedjic, Jelena; Trimarchi, Thomas; Flaherty, Maria Sol; Ferres-Marco, Dolors; da Ros, Vanina; Tang, Zuojian; Siegle, Jasmin; Asp, Patrik; Hadler, Michael; Rigo, Isaura; Keersmaecker, Kim De; Patel, Jay; Huynh, Tien; Utro, Filippo; Poglio, Sandrine; Samon, Jeremy B; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M; Rabadan, Raul; Levine, Ross L; Brown, Stuart; Pflumio, Francoise; Dominguez, Maria; Ferrando, Adolfo; Aifantis, Iannis
PMCID:3274628
PMID: 22237151
ISSN: 1078-8956
CID: 158681

T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling

Germar, Kristine; Dose, Marei; Konstantinou, Tassos; Zhang, Jiangwen; Wang, Hongfang; Lobry, Camille; Arnett, Kelly L; Blacklow, Stephen C; Aifantis, Iannis; Aster, Jon C; Gounari, Fotini
Although transcriptional programs associated with T-cell specification and commitment have been described, the functional hierarchy and the roles of key regulators in structuring/orchestrating these programs remain unclear. Activation of Notch signaling in uncommitted precursors by the thymic stroma initiates the T-cell differentiation program. One regulator first induced in these precursors is the DNA-binding protein T-cell factor 1 (Tcf-1), a T-cell-specific mediator of Wnt signaling. However, the specific contribution of Tcf-1 to early T-cell development and the signals inducing it in these cells remain unclear. Here we assign functional significance to Tcf-1 as a gatekeeper of T-cell fate and show that Tcf-1 is directly activated by Notch signals. Tcf-1 is required at the earliest phase of T-cell determination for progression beyond the early thymic progenitor stage. The global expression profile of Tcf-1-deficient progenitors indicates that basic processes of DNA metabolism are down-regulated in its absence, and the blocked T-cell progenitors become abortive and die by apoptosis. Our data thus add an important functional relationship to the roadmap of T-cell development.
PMCID:3250146
PMID: 22109558
ISSN: 0027-8424
CID: 163324

The notch signaling pathway as a suppressor of myeloid transformation [Meeting Abstract]

Aifantis, I
Notch signaling is a central regulator of differentiation in a variety of organisms and tissue types. Its activity is controlled by the multi-subunit -secretase complex SE) complex. Although Notch signaling can play both oncogenic and tumor suppressor roles in solid tumors, in the hematopoietic system, it is exclusively oncogenic, notably in T cell acute lymphoblastic leukemia (T-ALL), a disease characterized by Notch1 activating mutations. We identified somatic inactivating Notch pathway mutations in a fraction of chronic myelomonocytic leukemia (CMML) patients. Inactivation of Notch signaling in mouse hematopoietic stem cells (HSC) results in an aberrant accumulation of granulocyte/monocyte progenitors (GMP), extramedullary hematopoieisis and the induction of CMML-like disease. Transcriptome analysis reveals that Notch signaling regulates an extensive myelomonocytic-specific gene signature, through the direct suppression of gene transcription by the Notch target Hes1. These studies identify a novel role for Notch signaling during early hematopoietic stem cell differentiation and suggest that the Notch pathway can play both tumor-promoting and suppressive roles within the same tissue. These observations also suggest that Notch activity is not simply a promoter of the T cell lineage in the thymus but that Notch signaling thresholds could regulate commitment and/or survival of distinct hematopoietic lineages in the bone marrow. To address these issues in vivo, we have generated Notch receptor lineage tracing and activity reporter genetic tools. Analysis of these animal models identified unique novel functions for the Notch pathway during early bone marrow hematopoiesis
EMBASE:70773144
ISSN: 0006-4971
CID: 169656

ASXL1 mutations promote myeloid transformation through inhibition of PRC2-mediated gene repression [Meeting Abstract]

Abdel-Wahab, O; Adli, M; Saunders, L; Gao, J; Shih, A H; Pandey, S; Jaffe, J; Zhao, X; Perna, F; Carroll, M; Melnick, A; Nimer, S D; Aifantis, I; Bernstein, B; Levine, R L
Somatic mutations in ASXL1 have been identified in patients with myeloid malignancies and are associated with worsened overall survival in AML and MDS patients. However the mechanisms of myeloid transformation of ASXL1 mutations had not been delineated. We therefore performed extensive in vitro and in vivo studies to assess the functional implications of ASXL1 mutations in the hematopoietic compartment. Transcriptional and Western blot analysis demonstrated loss of ASXL1 protein in primary leukemia samples with endogenous ASXL1 mutations indicating that these mutations are loss-of-function disease alleles. Further, ASXL1 depletion by shRNA in normal and malignant hematopoietic cells leads to robust upregulation of a set of genes including the posterior HOXA cluster (HoxA5-HoxA13). Increased HoxA gene expression was confirmed in human hematopoietic stem progenitor cells targeted with ASXL1 siRNA and in mice with conditional deletion of Asxl1 in the hematopoietic compartment. Previous studies in Drosophila had revealed that Asxl forms the polycomb-repressive deubiquitinase (PR-DUB) complex with BAP1, which normally opposes the function of polycomb repressive complex 1 (PRC1) by removing H2AK119 ubiquitination. We verified that wild-type, but not mutant ASXL1 associates with BAP1 in co-immunoprecipitation studies. However, BAP1 depletion in hematopoietic cells did not result in significant changes in HoxA gene expression, suggesting that ASXL1 regulates gene expression in hematopoietic cells independent of its role in the PR-DUB complex. We therefore performed CHIP sequencing for known activating and repressive chromatin marks and histone mass spectrometry to elucidate the genome-wide effects of ASXL1 loss on chromatin state in hematopoietic cells. This allowed us to show that ASXL1 loss resulted in genome-wide loss of the transcriptionally repressive mark H3K27me3 in hematopoietic cells and primary patient samples with ASXL1 mutations. These data were supported by western blot analysis and histone mass spectrometry demonstrating a significant loss of H3K27 trimethylation in ASXL1-mutant cells. Moreover, ASXL1 mutations in primary leukemia samples are characterized by loss of H3K27 trimethylation at the HoxA locus. These data led us to hypothesize that ASXL1 interacts with the PRC2 complex; co-immunoprecipitation studies revealed that ASXL1 associates with members of the PRC2 complex including EZH2 and SUZ12 but not with the PRC1 repressive complex. Importantly, ASXL1 downregulation resulted in loss of EZH2 recruitment to the HOXA locus indicating a role of ASXL1 in recruiting the PRC2 complex to known leukemogenic loci. We next assessed the effects of ASXL1 loss in vivo by generating a conditional knock-out model of ASXL1 and also by employing shRNA to deplete ASXL1 in hematopoietic cells expressing the NRASG12D oncogene. Consonant with the in vitro data, we observed HOXA9 overexpression with ASXL1 loss/depletion in vivo. Preliminary analysis reveals that conditional, hematopoietic specific ASXL1-knockout (ASXL1fl/fl Vav-Cre) mice are characterized by progressive expansion of LSK and myeloid progenitor cells in mice less than 6 months of age. After 6 months of age a significant proportion of ASXL1fl/fl Vav-Cre mice developed leukocytosis, anemia, thrombocytopenia, and splenomegaly; pathologic analysis of tissues revealed a phenotype consistent with myelodysplasia with myeloproliferative features. Moreover, loss of ASXL1 in cooperation with expression of NRasG12D resulted in impaired survival, increased myeloproliferation, and progressive anemia consistent with MPN/MDS in vivo. Taken together, these results reveal that ASXL1 mutations result in a loss-of-function and suggest a specific role for ASXL1 in epigenetic regulation of gene expression by facilitating PRC2-mediated transcriptional repression of known leukemic oncogenes. Moreover, our in vivo data validate the importance of ASXL1 mutations in the pathogenesis of myeloid malignancies and provide insight into how mutations that inhibit PRC2 function contribute to myeloid transformation through epigenetic dysregulation of specific target genes
EMBASE:70772636
ISSN: 0006-4971
CID: 169660

Evaluating clonal dominance in a murine knock-in model of Jak2V617F MPN [Meeting Abstract]

Mullally, A; Poveromo, L; Brumme, K; Al-Shahrour, F; Lane, S W; Shih, A H; Aifantis, I; Levine, R L; Ebert, B L
Myeloproliferative neoplasms (MPN) are clonal disorders of hematopoiesis but the mechanisms of clonal dominance in these diseases are poorly understood. The JAK2V617F mutation is found in the majority of patients with MPN and is sufficient to confer the MPN phenotype. We recently described a Jak2V617F knock-in MPN model in which the mutation was expressed from the endogenous murine Jak2 promoter and the disease phenotype closely recapitulated human polycythemia vera (PV). In the model we found that the MPN-initiating population is contained within the CD150+CD48- LineagelowSca1+cKithigh(LSK) long-term hematopoietic stem cell (HSC) compartment, and showed that the MPN is cell autonomous and serially transplantable. In long-term competitive transplantation experiments we found that the Jak2V617F CD150+CD48- LSK population demonstrates gradual clonal expansion over time and we are now investigating the regulation of this primitive HSC population in vivo. Erythropoietin (EPO) signaling is reported to be the fundamental defect in polycythemia vera (PV). The JAK2V617F mutation is present in 95% PV patients and can be detected in the HSC compartment. We evaluated the role of EPO signaling in the JAK2V617F mutant HSC compartment using a conditional Jak2V617F knock-in murine model. Floxed Jak2+/VF mice were crossed with Vav Cre or erythropoietin receptor GFP Cre (ErGFPcre) mice resulting in Jak2V617F expression in all hematopoietic lineages or in erythroid restricted Jak2V617F expression respectively. Jak2V617F-ErGFPcre mice demonstrated elevated hematocrit, expanded committed erythroid progenitors and suppressed EPO levels but had an attenuated MPN phenotype as compared with Jak2V617F-Vavcre mice. Notably, the hematopoietic stem and progenitor cell (HSPC) compartment was not expanded in Jak2V617F-ErGFPcre mice and HSCs from both Jak2V617F-Vavcre and Jak2V617F-ErGFPcre mice did not activate phosphoStat5 signaling in response to EPO stimulation. These results indicate that expression of Jak2V617F in the HSC compartment is required for development of a full MPN phenotype and suggest that cytokine receptors other than the EPO receptor are important in mediating clonal dominance within the HSC compartment in JAK2V617F mediated MPN. TET2 is one of three TET gene family members that appear to play a role in DNA demethylation. Acquired TET2 deletions and loss-of-function mutations have been found across a broad spectrum of myeloid malignancies indicating that TET2 may drive a common pathogenic step in myeloid cancers, such as the establishment and/or enhancement of clonal dominance. Tet2 null HSCs have recently been shown to have a competitive repopulating advantage over wild-type HSCs in murine transplantation assays. TET2 loss-of-function mutations are found in approximately 12% of MPN patients, are often found co-mutated with JAK2V617F and have been associated with leukemic transformation of MPN. To evaluate the effects of loss of Tet2 function on the self-renewal and differentiation of Jak2V617F mutant HSCs, we crossed Jak2V617F knock-in mice with Tet2 conditional knockout mice. At 6 weeks of age, Jak2V617F/Tet2 +/-Vav Cre mice do not demonstrate significant differences in MPN phenotype as compared with Jak2V617F/Tet2+/+ Vav Cre mice, in terms of peripheral blood counts, hematopoietic stem and progenitor cell numbers or in colony formation. Additional studies using older mice and Jak2V617F/Tet2-/-Vav Cre animals are underway to further investigate the impact of loss of Tet2 function on Jak2V617F mutant HSCs. Understanding the mechanisms that contribute to clonal dominance in MPN will help facilitate the development of strategies to selectively target MPN stem cells therapeutically, and thereby advance the treatment of MPN patients
EMBASE:70771150
ISSN: 0006-4971
CID: 169666

The controversial role of the Hedgehog pathway in normal and malignant hematopoiesis

Mar, B G; Amakye, D; Aifantis, I; Buonamici, S
Hedgehog (Hh) is a developmental signaling pathway in which Hh ligands bind Patched (Ptch), which relieves its inhibition of Smoothened (Smo), allowing the Gli family of transcription factors to translocate to the nucleus and activate Hh target genes. The role of Hh signaling in hematopoiesis is controversial and ill defined. Although some groups observed self-renewal defects with decreased replating and reduced efficiency of secondary murine transplants, other groups reported no hematopoietic phenotypes, which may be related to the timing of Hh abrogation. In malignant hematopoiesis, most attention has been focused on the role of Hh signaling in chronic myeloid leukemia (CML), considered by many to be a stem cell disorder that bears the constitutively active BCR-ABL tyrosine kinase. Despite the elimination of most leukemia cells through BCR-ABL inhibition, most patients remain PCR positive, suggesting that the putative CML stem cell may be resistant to kinase antagonism. Groups are now exploring the Hh pathway as an alternate pathway supporting CML stem cell survival. Knockdown or inhibition of Smo abrogates or delays the appearance of CML in several in vitro and in vivo models. These data have lead to clinical trials using BCR-ABL kinase and novel Smo inhibitors in combination.
PMCID:4310480
PMID: 21660044
ISSN: 0887-6924
CID: 163326

Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think

Lobry, Camille; Oh, Philmo; Aifantis, Iannis
Notch signaling is often considered a model hematopoietic proto-oncogene because of its role as the main trigger of T cell acute lymphoblastic leukemia (T-ALL). Although its role in T-ALL is well characterized and further supported by a high frequency of activating NOTCH1 mutations in T-ALL patients, it still remains an open question whether the effects of Notch signaling are causative in other types of cancer, including solid tumors. Growing evidence supported by recent studies unexpectedly shows that Notch signaling can also have a potent tumor suppressor function in both solid tumors and hematological malignancies. We discuss the intriguing possibility that the pleiotropic functions of Notch can be tumor suppressive or oncogenic depending on the cellular context
PMCID:3182047
PMID: 21948802
ISSN: 1540-9538
CID: 137892

TET Family Proteins and Their Role in Stem Cell Differentiation and Transformation

Cimmino, Luisa; Abdel-Wahab, Omar; Levine, Ross L; Aifantis, Iannis
One of the main regulators of gene expression during embryogenesis and stem cell differentiation is DNA methylation. The recent identification of hydroxymethylcytosine (5hmC) as a novel epigenetic mark sparked an intense effort to characterize its specialized enzymatic machinery and to understand the biological significance of 5hmC. The recent discovery of recurrent deletions and somatic mutations in the TET gene family, which includes proteins that can hydroxylate methylcytosine (5mC), in a large fraction of myeloid malignancies further suggested a key role for dynamic DNA methylation changes in the regulation of stem cell differentiation and transformation
PMCID:3244690
PMID: 21885017
ISSN: 1875-9777
CID: 137075