Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:boekej01

Total Results:

496


tRNA genes rapidly change in evolution to meet novel translational demands

Yona, Avihu H; Bloom-Ackermann, Zohar; Frumkin, Idan; Hanson-Smith, Victor; Charpak-Amikam, Yoav; Feng, Qinghua; Boeke, Jef D; Dahan, Orna; Pilpel, Yitzhak
Changes in expression patterns may occur when organisms are presented with new environmental challenges, for example following migration or genetic changes. To elucidate the mechanisms by which the translational machinery adapts to such changes, we perturbed the tRNA pool of Saccharomyces cerevisiae by tRNA gene deletion. We then evolved the deletion strain and observed that the genetic adaptation was recurrently based on a strategic mutation that changed the anticodon of other tRNA genes to match that of the deleted one. Strikingly, a systematic search in hundreds of genomes revealed that anticodon mutations occur throughout the tree of life. We further show that the evolution of the tRNA pool also depends on the need to properly couple translation to protein folding. Together, our observations shed light on the evolution of the tRNA pool, demonstrating that mutation in the anticodons of tRNA genes is a common adaptive mechanism when meeting new translational demands. DOI: http://dx.doi.org/10.7554/eLife.01339.001.
PMCID:3868979
PMID: 24363105
ISSN: 2050-084x
CID: 886892

TE-array--a high throughput tool to study transposon transcription

Gnanakkan, Veena P; Jaffe, Andrew E; Dai, Lixin; Fu, Jie; Wheelan, Sarah J; Levitsky, Hyam I; Boeke, Jef D; Burns, Kathleen H
BACKGROUND: Although transposable element (TE) derived DNA accounts for more than half of mammalian genomes and initiates a significant proportion of RNA transcripts, high throughput methods are rarely leveraged specifically to detect expression from interspersed repeats. RESULTS: To characterize the contribution of transposons to mammalian transcriptomes, we developed a custom microarray platform with probes covering known human and mouse transposons in both sense and antisense orientations. We termed this platform the "TE-array" and profiled TE repeat expression in a panel of normal mouse tissues. Validation with nanoString(R) and RNAseq technologies demonstrated that TE-array is an effective method. Our data show that TE transcription occurs preferentially from the sense strand and is regulated in highly tissue-specific patterns. CONCLUSIONS: Our results are consistent with the hypothesis that transposon RNAs frequently originate within genomic TE units and do not primarily accumulate as a consequence of random 'read-through' from gene promoters. Moreover, we find TE expression is highly dependent on the tissue context. This suggests that TE expression may be related to tissue-specific chromatin states or cellular phenotypes. We anticipate that TE-array will provide a scalable method to characterize transposable element RNAs.
PMCID:3878892
PMID: 24325565
ISSN: 1471-2164
CID: 886882

Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition

Taylor, Martin S; Lacava, John; Mita, Paolo; Molloy, Kelly R; Huang, Cheng Ran Lisa; Li, Donghui; Adney, Emily M; Jiang, Hua; Burns, Kathleen H; Chait, Brian T; Rout, Michael P; Boeke, Jef D; Dai, Lixin
LINE-1s are active human DNA parasites that are agents of genome dynamics in evolution and disease. These streamlined elements require host factors to complete their life cycles, whereas hosts have developed mechanisms to combat retrotransposition's mutagenic effects. As such, endogenous L1 expression levels are extremely low, creating a roadblock for detailed interactomic analyses. Here, we describe a system to express and purify highly active L1 RNP complexes from human suspension cell culture and characterize the copurified proteome, identifying 37 high-confidence candidate interactors. These data sets include known interactors PABPC1 and MOV10 and, with in-cell imaging studies, suggest existence of at least three types of compositionally and functionally distinct L1 RNPs. Among the findings, UPF1, a key nonsense-mediated decay factor, and PCNA, the polymerase-delta-associated sliding DNA clamp, were identified and validated. PCNA interacts with ORF2p via a PIP box motif; mechanistic studies suggest that this occurs during or immediately after target-primed reverse transcription.
PMCID:3904357
PMID: 24267889
ISSN: 0092-8674
CID: 886872

Genome-wide Consequences of Deleting Any Single Gene

Teng, Xinchen; Dayhoff-Brannigan, Margaret; Cheng, Wen-Chih; Gilbert, Catherine E; Sing, Cierra N; Diny, Nicola L; Wheelan, Sarah J; Dunham, Maitreya J; Boeke, Jef D; Pineda, Fernando J; Hardwick, J Marie
Loss or duplication of chromosome segments can lead to further genomic changes associated with cancer. However, it is not known whether only a select subset of genes is responsible for driving further changes. To determine whether perturbation of any given gene in a genome suffices to drive subsequent genetic changes, we analyzed the yeast knockout collection for secondary mutations of functional consequence. Unlike wild-type, most gene knockout strains were found to have one additional mutant gene affecting nutrient responses and/or heat-stress-induced cell death. Moreover, independent knockouts of the same gene often evolved mutations in the same secondary gene. Genome sequencing identified acquired mutations in several human tumor suppressor homologs. Thus, mutation of any single gene may cause a genomic imbalance, with consequences sufficient to drive adaptive genetic changes. This complicates genetic analyses but is a logical consequence of losing a functional unit originally acquired under pressure during evolution.
PMCID:3975072
PMID: 24211263
ISSN: 1097-2765
CID: 615172

Architectural Organization of the Metabolic Regulatory Enzyme Ghrelin-O-Acyltransferase

Taylor, Martin S; Ruch, Travis R; Hsiao, Po-Yuan; Hwang, Yousang; Zhang, Pingfeng; Dai, Lixin; Huang, Cheng Ran Lisa; Berndsen, Christopher E; Kim, Min-Sik; Pandey, Akhilesh; Wolberger, Cynthia; Marmorstein, Ronen; Machamer, Carolyn; Boeke, Jef D; Cole, Philip A
Ghrelin O-AcylTransferase (GOAT) is a polytopic integral membrane protein required for activation of ghrelin, a secreted metabolism-regulating peptide hormone. Although GOAT is a potential therapeutic target for the treatment of obesity and diabetes and plays a key role in other physiologic processes, little is known about its structure or mechanism. GOAT is a member of the Membrane Bound O-AcylTransferase (MBOAT) family, a group of polytopic integral membrane proteins involved in lipid-biosynthetic and lipid-signaling reactions from prokaryotes to humans. Here, we use phylogeny and a variety of bioinformatic tools to predict the topology of GOAT. Using selective permeabilization indirect immunofluorescence microscopy in combination with glycosylation-shift immunoblotting, we demonstrate that GOAT contains 11 transmembrane helices and one reentrant loop. Development of the V5Glyc tag, a novel, small, and sensitive dual topology reporter, facilitated these experiments. The MBOAT family invariant residue His338 is in the ER lumen, consistent with other family members, but conserved Asn307 is cytosolic, making it unlikely that both are involved in catalysis. Photocrosslinking of synthetic ghrelin analogs and inhibitors demonstrates binding to the C-terminal region of GOAT, consistent with a role of His338 in the active site. This knowledge of GOAT architecture is important for a deeper understanding of the mechanism of GOAT and other MBOATs and could ultimately enhance the discovery of selective inhibitors for these enzymes.
PMCID:3820860
PMID: 24045953
ISSN: 0021-9258
CID: 571432

Kinetochore Function and Chromosome Segregation Rely On Critical Residues in Histones H3 and H4 in Budding Yeast

Ng, Tessie M; Lenstra, Tineke L; Duggan, Nicole; Jiang, Shuangying; Ceto, Steven; Holstege, Frank C P; Dai, Junbiao; Boeke, Jef D; Biggins, Sue
Accurate chromosome segregation requires that sister kinetochores biorient and attach to microtubules from opposite poles. Kinetochore biorientation relies on the underlying centromeric chromatin, which provides a platform to assemble the kinetochore and to recruit the regulatory factors that ensure the high fidelity of this process. To identify the centromeric chromatin determinants that contribute to chromosome segregation, we performed two complementary unbiased genetic screens using a library of budding yeast mutants in every residue of histone H3 and H4. In one screen, we identified mutants that lead to increased loss of a non-essential chromosome. In the second screen, we isolated mutants whose viability depends on a key regulator of biorientation, the Aurora B protein kinase. Nine mutants were common to both screens and exhibited kinetochore biorientation defects. Four of the mutants map near the unstructured nucleosome entry site and their genetic interaction with reduced IPL1 can be suppressed by increasing the dosage of SGO1, a key regulator of biorientation. In addition, the composition of purified kinetochores was altered in six of the mutants. Together, this work identifies previously unknown histone residues involved in chromosome segregation and lays the foundation for future studies on the role of the underlying chromatin structure in chromosome segregation.
PMCID:3813865
PMID: 24037263
ISSN: 0016-6731
CID: 571442

Multichange isothermal mutagenesis: a new strategy for multiple site-directed mutations in plasmid DNA

Mitchell, Leslie A; Cai, Yizhi; Taylor, Martin; Noronha, Anne Marie; Chuang, James; Dai, Lixin; Boeke, Jef D
Multichange ISOthermal (MISO) mutagenesis is a new technique allowing simultaneous introduction of multiple site-directed mutations into plasmid DNA by leveraging two existing ideas: QuikChange-style primers and one-step isothermal (ISO) assembly. Inversely partnering pairs of QuikChange primers results in robust, exponential amplification of linear fragments of DNA encoding mutagenic yet homologous ends. These products are amenable to ISO assembly, which efficiently assembles them into a circular, mutagenized plasmid. Because the technique relies on ISO assembly, MISO mutagenesis is additionally amenable to other relevant DNA modifications such as insertions and deletions. Here we provide a detailed description of the MISO mutagenesis concept and highlight its versatility by applying it to three experiments currently intractable with standard site-directed mutagenesis approaches. MISO mutagenesis has the potential to become widely used for site-directed mutagenesis.
PMCID:4040258
PMID: 23654272
ISSN: 2161-5063
CID: 571482

Controlled insertional mutagenesis using a LINE-1 (ORFeus) gene-trap mouse model

O'Donnell, Kathryn A; An, Wenfeng; Schrum, Christina T; Wheelan, Sarah J; Boeke, Jef D
A codon-optimized mouse LINE-1 element, ORFeus, exhibits dramatically higher retrotransposition frequencies compared with its native long interspersed element 1 counterpart. To establish a retrotransposon-mediated mouse model with regulatable and potent mutagenic capabilities, we generated a tetracycline (tet)-regulated ORFeus element harboring a gene-trap cassette. Here, we show that mice expressing tet-ORFeus broadly exhibit robust retrotransposition in somatic tissues when treated with doxycycline. Consistent with a significant mutagenic burden, we observed a reduced number of double transgenic animals when treated with high-level doxycycline during embryogenesis. Transgene induction in skin resulted in a white spotting phenotype due to somatic ORFeus-mediated mutations that likely disrupt melanocyte development. The data suggest a high level of transposition in melanocyte precursors and consequent mutation of genes important for melanoblast proliferation, differentiation, or migration. These findings reveal the utility of a retrotransposon-based mutagenesis system as an alternative to existing DNA transposon systems. Moreover, breeding these mice to different tet-transactivator/reversible tet-transactivator lines supports broad functionality of tet-ORFeus because of the potential for dose-dependent, tissue-specific, and temporal-specific mutagenesis.
PMCID:3718180
PMID: 23818630
ISSN: 0027-8424
CID: 571462

A DNA Integrity Network in the Yeast Saccharomyces cerevisiae (vol 124, pg 1069, 2006) [Correction]

Pan, Xuewen; Ye, Ping; Yuan, Daniel S.; Wang, Xiaoling; Bader, Joel S.; Boeke, Jef D.
ISI:000319456800022
ISSN: 0092-8674
CID: 616572

A quantitative analysis of histone methylation and acetylation isoforms from their deuteroacetylated derivatives: application to a series of knockout mutants

Fiedler, Katherine L; Bheda, Poonam; Dai, Junbiao; Boeke, Jef D; Wolberger, Cynthia; Cotter, Robert J
The core histones, H2A, H2B, H3 and H4, undergo post-translational modifications (PTMs) including lysine acetylation, methylation and ubiquitylation, arginine methylation and serine phosphorylation. Lysine residues may be mono-, di- and trimethylated, the latter resulting in an addition of mass to the protein that differs from acetylation by only 0.03639 Da, but that can be distinguished either on high-performance mass spectrometers with sufficient mass accuracy and mass resolution or via retention times. Here we describe the use of chemical derivatization to quantify methylated and acetylated histone isoforms by forming deuteroacetylated histone derivatives prior to tryptic digestion and bottom-up liquid chromatography-mass spectrometric analysis. The deuteroacetylation of unmodified or mono-methylated lysine residues produces a chemically identical set of tryptic peptides when comparing the unmodified and modified versions of a protein, making it possible to directly quantify lysine acetylation. In this work, the deuteroacetylation technique is used to examine a single histone H3 peptide with methyl and acetyl modifications at different lysine residues and to quantify the relative abundance of each modification in different deacetylase and methylase knockout yeast strains. This application demonstrates the use of the deuteroacetylation technique to characterize modification 'cross-talk' by correlating different PTMs on the same histone tail.
PMCID:3784001
PMID: 23674285
ISSN: 1076-5174
CID: 571472