Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:ginsbs01

Total Results:

347


Age-dependent dysregulation of brain amyloid precursor protein in the Ts65Dn Down syndrome mouse model

Choi, Jennifer H K; Berger, Jason D; Mazzella, Matthew J; Morales-Corraliza, Jose; Cataldo, Anne M; Nixon, Ralph A; Ginsberg, Stephen D; Levy, Efrat; Mathews, Paul M
Individuals with Down syndrome develop beta-amyloid deposition characteristic of early-onset Alzheimer's disease (AD) in mid-life, presumably because of an extra copy of the chromosome 21-located amyloid precursor protein (App) gene. App mRNA and APP metabolite levels were assessed in the brains of Ts65Dn mice, a mouse model of Down syndrome, using quantitative PCR, western blot analysis, immunoprecipitation, and ELISAs. In spite of the additional App gene copy, App mRNA, APP holoprotein, and all APP metabolite levels in the brains of 4-month-old trisomic mice were not increased compared with the levels seen in diploid littermate controls. However starting at 10 months of age, brain APP levels were increased proportional to the App gene dosage imbalance reflecting increased App message levels in Ts65Dn mice. Similar to APP levels, soluble amino-terminal fragments of APP (sAPPalpha and sAPPbeta) were increased in Ts65Dn mice compared with diploid mice at 12 months but not at 4 months of age. Brain levels of both Abeta40 and Abeta42 were not increased in Ts65Dn mice compared with diploid mice at all ages examined. Therefore, multiple mechanisms contribute to the regulation towards diploid levels of APP metabolites in the Ts65Dn mouse brain
PMCID:2744432
PMID: 19619138
ISSN: 1471-4159
CID: 126493

Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer's disease

Peng, Shiyong; Garzon, Diego J; Marchese, Monica; Klein, William; Ginsberg, Stephen D; Francis, Beverly M; Mount, Howard T J; Mufson, Elliott J; Salehi, Ahmad; Fahnestock, Margaret
Downregulation of brain-derived neurotrophic factor (BDNF) in the cortex occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival, synaptic plasticity, and memory, BDNF reduction may contribute to synaptic and cellular loss and memory deficits characteristic of AD. In vitro evidence suggests that amyloid-beta (A beta) contributes to BDNF downregulation in AD, but the specific A beta aggregation state responsible for this downregulation in vivo is unknown. In the present study, we examined cortical levels of BDNF mRNA in three different transgenic AD mouse models harboring mutations in APP resulting in A beta overproduction, and in a genetic mouse model of Down syndrome. Two of the three A beta transgenic strains (APP(NLh) and TgCRND8) exhibited significantly decreased cortical BDNF mRNA levels compared with wild-type mice, whereas neither the other strain (APP(swe)/PS-1) nor the Down syndrome mouse model (Ts65Dn) was affected. Only APP(NLh) and TgCRND8 mice expressed high A beta(42)/A beta(40) ratios and larger SDS-stable A beta oligomers (approximately 115 kDa). TgCRND8 mice exhibited downregulation of BDNF transcripts III and IV; transcript IV is also downregulated in AD. Furthermore, in all transgenic mouse strains, there was a correlation between levels of large oligomers, A beta(42)/A beta(40), and severity of BDNF decrease. These data show that the amount and species of A beta vary among transgenic mouse models of AD and are negatively correlated with BDNF levels. These findings also suggest that the effect of A beta on decreased BDNF expression is specific to the aggregation state of A beta and is dependent on large oligomers
PMCID:3411546
PMID: 19625522
ISSN: 1529-2401
CID: 135249

Cortical alpha7 nicotinic acetylcholine receptor and beta-amyloid levels in early Alzheimer disease

Ikonomovic, Milos D; Wecker, Lynn; Abrahamson, Eric E; Wuu, Joanne; Counts, Scott E; Ginsberg, Stephen D; Mufson, Elliott J; Dekosky, Steven T
OBJECTIVE: To examine alpha7 nicotinic acetylcholine receptor (nAChR) binding and beta-amyloid (Abeta) peptide load in superior frontal cortex (SFC) across clinical and neuropathological stages of Alzheimer disease (AD). DESIGN: Quantitative measures of alpha7 nAChR by [(3)H]methyllycaconitine binding and Abeta concentration by enzyme-linked immunosorbent assay in SFC were compared across subjects with antemortem clinical classification of no cognitive impairment, mild cognitive impairment, or mild to moderate AD, and with postmortem neuropathological diagnoses. SETTING: Academic medical center. Subjects Twenty-nine elderly retired clergy. MAIN OUTCOME MEASURES: Quantitative measures of alpha7 nAChR binding and Abeta peptide concentration in SFC. RESULTS: Higher concentrations of total Abeta peptide in SFC were associated with clinical diagnosis of mild to moderate AD (P = .02), lower Mini-Mental State Examination scores (P = .003), presence of cortical Abeta plaques (P = .02), and likelihood of AD diagnosis by the National Institute on Aging-Reagan criteria (P = .002). Increased alpha7 nAChR binding was associated with National Institute on Aging-Reagan diagnosis (P = .02) and, albeit weakly, the presence of cortical Abeta plaques (P = .08). There was no correlation between the 2 biochemical measures. CONCLUSIONS: These observations suggest that during the clinical progression from normal cognition to neurodegenerative disease state, total Abeta peptide concentration increases while alpha7 nAChRs remain relatively stable in SFC. Regardless of subjects' clinical status, however, elevated alpha7 nAChR binding is associated with increased Abeta plaque pathology, supporting the hypothesis that cellular expression of these receptors may be upregulated selectively in Abeta plaque-burdened brain areas.
PMCID:2841566
PMID: 19433665
ISSN: 0003-9942
CID: 448402

Terminal continuation (TC) RNA amplification without second strand synthesis

Alldred, Melissa J; Che, Shaoli; Ginsberg, Stephen D
Terminal continuation (TC) RNA amplification was developed originally to reproducibly and inexpensively amplify RNA. The TC RNA amplification method has been improved further by obviating second strand DNA synthesis, a cost-effective protocol that takes less time to perform with fewer manipulations required for RNA amplification. Results demonstrate that TC RNA amplification without second strand synthesis does not differ from the original protocol using RNA harvested from mouse brain and from hippocampal neurons obtained via laser capture microdissection from postmortem human brains. The modified TC RNA amplification method can discriminate single cell gene expression profiles between normal control and Alzheimer's disease hippocampal neurons indistinguishable from the original protocol. Thus, TC RNA amplification without second strand synthesis is a reproducible, time- and cost-effective method for RNA amplification from minute amounts of input RNA, and is compatible with microaspiration strategies and subsequent microarray analysis as well as quantitative real-time PCR
PMCID:2659495
PMID: 19026688
ISSN: 0165-0270
CID: 105217

Systemic pathology in aged mouse models of Down's syndrome and Alzheimer's disease

Levine, Seymour; Saltzman, Arthur; Levy, Efrat; Ginsberg, Stephen D
Down's syndrome (DS) in humans is caused by trisomy of chromosome 21 (HSA 21). DS patients have a variety of pathologies, including mental retardation and an unusually high incidence of leukemia or lymphoma such as megakaryocytic leukemia. Individuals with DS develop the characteristic neuropathological hallmarks of Alzheimer's disease (AD) in early adulthood, generally by the fourth decade of life. There are several mouse models of DS that have a segmental trisomy of mouse chromosome 16 (MMU 16) with triplicated genes orthologous to HSA 21. These mice display neurodegeneration similar to DS. Although brain pathology in DS models is known, little information is available about other organs. We studied the extraneural pathology in aged DS mice (Ts65Dn, Ts2 and Ts1Cje aged 8 to 24 months) as well as other mouse models of neurodegeneration, including presenilin (PS), amyloid-beta precursor protein (APP), and tau (hTau and JNPL) transgenic mice. An increased incidence of peripheral amyloidosis, positive for amyloid A (AA) but not amyloid-beta peptide (A beta), was found in APP over-expressing and tauopathic mice as compared to non-transgenic (ntg) littermates or to DS mouse models. A higher incidence of lymphoma was found in the DS models, including Ts1Cje that is trisomic for a small segment of MMU 16 not including the App gene, but not in the APP over-expressing mice, suggesting that high APP expression is not the cause of lymphoma in DS. The occurrence of lymphomas in mouse DS models is of interest in relation to the increased incidence of malignant conditions in human DS
PMCID:2659493
PMID: 19041304
ISSN: 1096-0945
CID: 95847

Target identification for CNS diseases by transcriptional profiling

Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D
Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14-3-3 protein members, implicating these chaperone proteins and the neurotransmitter pathways they support as possible drug targets. Brains from persons with major depressive disorder reveal decreased expression for genes in glutamate transport and metabolism, neurotrophic signaling (eg, FGF, BDNF and VGF), and MAP kinase pathways. Increases in these pathways in the brains of animals exposed to electroconvulsive shock and antidepressant treatments identify neurotrophic and angiogenic growth factors and second messenger stimulation as therapeutic approaches for the treatment of depression
PMCID:2675576
PMID: 18923405
ISSN: 1740-634X
CID: 133661

Galanin fiber hyperinnervation preserves neuroprotective gene expression in cholinergic basal forebrain neurons in Alzheimer's disease

Counts, Scott E; He, Bin; Che, Shaoli; Ginsberg, Stephen D; Mufson, Elliott J
Fibers containing galanin (GAL) hyperinnervate cholinergic basal forebrain (CBF) nucleus basalis neurons in late stage Alzheimer's disease (AD), yet the molecular consequences of this phenomenon are unknown. To determine whether GAL alters the expression of genes critical to CBF cell survival in AD, single cell microarray analysis was used to determine mRNA levels within nucleus basalis neurons lacking GAL innervation from subjects who died with a clinical diagnosis of no cognitive impairment (NCI) compared to nucleus basalis neurons from AD cases either lacking GAL hyperinnervation (AD/GAL-) or those displaying prominent GAL hyperinnervation (AD/GAL+). Levels of mRNAs encoding putatively neuroprotective proteins such as the GluR2 Ca(2)-impermeable glutamate receptor subunit, superoxide dismutase 2, and the GLUT2 glucose transporter were significantly decreased in AD/GAL- nucleus basalis neurons compared to NCI and AD/GAL+ neurons. By contrast, mRNAs encoding calpain catalytic and regulatory subunits, which may contribute to cell death in AD, were increased in AD/GAL- compared to NCI and AD/GAL+ neurons. Hence, GAL fiber hyperinnervation appears to preserve the expression of genes subserving multiple neuroprotective pathways suggesting that GAL overexpression regulates CBF neuron survival in AD
PMCID:2884383
PMID: 19749437
ISSN: 1875-8908
CID: 133749

Alzheimer research forum, 23 Apr 2009

Anne Cataldo, 57, Autophagy Researcher Known for Generous Collegiality

Ginsberg, Stephen D
(Website)
CID: 453052

MicroRNA (miRNA) expression profiling within the frontal cortex of normal aged and Alzheimer's disease (AD) subjects using miRNA signature sequence amplification (SSAM) technology [Meeting Abstract]

Che, S.; Ginsberg, S. D.
BIOSIS:PREV201200030445
ISSN: 1558-3635
CID: 459042

Overexpression of the early endosome effector rab5 in human fibroblasts leads to down regulation of the neurotrophin receptor trkB [Meeting Abstract]

Elarova, I.; Alldred, M. J.; Che, S.; Counts, S. E.; Cataldo, A. M.; Neve, R. L.; Mufson, E. J.; Chao, M. V.; Nixon, R. A.; Ginsberg, S. D.
BIOSIS:PREV201200030444
ISSN: 1558-3635
CID: 459062