Searched for: in-biosketch:yes
person:torrev02
Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion
Sundrud, Mark S; Torres, Victor J; Unutmaz, Derya; Cover, Timothy L
Recent evidence indicates that the secreted Helicobacter pylori vacuolating toxin (VacA) inhibits the activation of T cells. VacA blocks IL-2 secretion in transformed T cell lines by suppressing the activation of nuclear factor of activated T cells (NFAT). In this study, we investigated the effects of VacA on primary human CD4(+) T cells. VacA inhibited the proliferation of primary human T cells activated through the T cell receptor (TCR) and CD28. VacA-treated Jurkat T cells secreted markedly diminished levels of IL-2 compared with untreated cells, whereas VacA-treated primary human T cells continued to secrete high levels of IL-2. Further experiments indicated that the VacA-induced inhibition of primary human T cell proliferation was not attributable to VacA effects on NFAT activation or IL-2 secretion. We show here that VacA suppresses IL-2-induced cell-cycle progression and proliferation of primary human T cells without affecting IL-2-dependent survival. Through the analysis of a panel of mutant VacA proteins, we demonstrate that VacA-mediated inhibition of T cell proliferation requires an intact N-terminal hydrophobic region necessary for the formation of anion-selective membrane channels. Remarkably, we demonstrate that one of these mutant VacA proteins [VacA-Delta(6-27)] abrogates the immunosuppressive actions of wild-type VacA in a dominant-negative fashion. We suggest that VacA may inhibit the clonal expansion of T cells that have already been activated by H. pylori antigens, thereby allowing H. pylori to evade the adaptive immune response and establish chronic infection
PMCID:419674
PMID: 15128946
ISSN: 0027-8424
CID: 71105
Interactions between p-33 and p-55 domains of the Helicobacter pylori vacuolating cytotoxin (VacA)
Torres, Victor J; McClain, Mark S; Cover, Timothy L
The VacA toxin secreted by Helicobacter pylori is considered to be an important virulence factor in the pathogenesis of peptic ulcer disease and gastric cancer. VacA monomers self-assemble into water-soluble oligomeric structures and can form anion-selective membrane channels. The goal of this study was to characterize VacA-VacA interactions that may mediate assembly of VacA monomers into higher order structures. We investigated potential interactions between two domains of VacA (termed p-33 and p-55) by using a yeast two-hybrid system. p-33/p-55 interactions were detected in this system, whereas p-33/p-33 and p-55/p-55 interactions were not detected. Several p-33 proteins containing internal deletion mutations were unable to interact with wild-type p-55 in the yeast two-hybrid system. Introduction of these same deletion mutations into the H. pylori vacA gene resulted in secretion of mutant VacA proteins that failed to assemble into large oligomeric structures and that lacked vacuolating toxic activity for HeLa cells. Additional mapping studies in the yeast two-hybrid system indicated that only the N-terminal portion of the p-55 domain is required for p-33/p-55 interactions. To characterize further p-33/p-55 interactions, we engineered an H. pylori strain that produced a VacA toxin containing an enterokinase cleavage site located between the p-33 and p-55 domains. Enterokinase treatment resulted in complete proteolysis of VacA into p-33 and p-55 domains, which remained physically associated within oligomeric structures and retained vacuolating cytotoxin activity. These results provide evidence that interactions between p-33 and p-55 domains play an important role in VacA assembly into oligomeric structures
PMID: 14593124
ISSN: 0021-9258
CID: 90823
Functional analysis of the p33 and p55 domains of the Helicobacter pylori vacuolating cytotoxin
Torres, Victor J
[S.l. : s.n.], 2004
Extent: xii, 124 p.
ISBN: n/a
CID: 1938
Inactivation of a Helicobacter pylori DNA methyltransferase alters dnaK operon expression following host-cell adherence
Donahue, John P; Israel, Dawn A; Torres, Victor J; Necheva, Antoaneta S; Miller, Geraldine G
The Helicobacter pylori hpyIM gene encodes a type II DNA methyltransferase that is highly conserved among strains. To investigate the potential role of M.HpyI methyltransferase activity in controlling gene expression in H. pylori, we analyzed gene transcription profiles in wild-type strain J166 and an isogenic hpyIM mutant strain using gene arrays. This analysis showed that the expression of a majority of genes was unaffected by hpyIM mutation, especially in exponential phase cultures. However, in stationary phase cultures and in cells adherent to AGS gastric epithelial cells in vitro, loss of hpyIM function altered the expression of the stress-responsive dnaK operon. Complementation of the hpyIM mutation using a shuttle plasmid encoding a wild-type copy of the gene re-established the wild-type pattern of dnaK operon expression. These data suggested that hpyIM, encoding a DNA methyltransferase, may have a role in H. pylori physiology that supersedes its original function in a type II restriction-modification system
PMID: 11959452
ISSN: 0378-1097
CID: 90822