Searched for: in-biosketch:yes
person:torrev02
Random mutagenesis of Helicobacter pylori vacA to identify amino acids essential for vacuolating cytotoxic activity
McClain, Mark S; Czajkowsky, Daniel M; Torres, Victor J; Szabo, Gabor; Shao, Zhifeng; Cover, Timothy L
VacA is a secreted toxin that plays a role in Helicobacter pylori colonization of the stomach and may contribute to the pathogenesis of peptic ulcer disease and gastric cancer. In this study, we analyzed a library of plasmids expressing randomly mutated forms of recombinant VacA and identified 10 mutant VacA proteins that lacked vacuolating cytotoxic activity when added to HeLa cells. The mutations included six single amino acid substitutions within an amino-terminal hydrophobic region and four substitutions outside the amino-terminal hydrophobic region. All 10 mutations mapped within the p33 domain of VacA. By introducing mutations into the H. pylori chromosomal vacA gene, we showed that secreted mutant toxins containing V21L, S25L, G121R, or S246L mutations bound to cells and were internalized but had defects in vacuolating activity. In planar lipid bilayer and membrane depolarization assays, VacA proteins containing V21L and S25L mutations were defective in formation of anion-selective membrane channels, whereas proteins containing G121R or S246L mutations retained channel-forming capacity. These are the first point mutations outside the amino-terminal hydrophobic region that are known to abrogate vacuolating toxin activity. In addition, these are the first examples of mutant VacA proteins that have defects in vacuolating activity despite exhibiting channel activities similar to those of wild-type VacA
PMCID:1695532
PMID: 16954403
ISSN: 0019-9567
CID: 90832
Staphylococcus aureus redirects central metabolism to increase iron availability
Friedman, David B; Stauff, Devin L; Pishchany, Gleb; Whitwell, Corbin W; Torres, Victor J; Skaar, Eric P
Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment) or genetic (Deltafur) alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB), a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus
PMCID:1557832
PMID: 16933993
ISSN: 1553-7374
CID: 90831
Protein-protein interactions among Helicobacter pylori cag proteins
Busler, Valerie J; Torres, Victor J; McClain, Mark S; Tirado, Oscar; Friedman, David B; Cover, Timothy L
Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus
PMCID:1482994
PMID: 16788188
ISSN: 0021-9193
CID: 90829
Mapping of a domain required for protein-protein interactions and inhibitory activity of a Helicobacter pylori dominant-negative VacA mutant protein
Torres, Victor J; McClain, Mark S; Cover, Timothy L
The Helicobacter pylori VacA toxin is an 88-kDa secreted protein that causes multiple alterations in mammalian cells and is considered an important virulence factor in the pathogenesis of peptic ulcer disease and gastric cancer. We have shown previously that a VacA mutant protein lacking amino acids 6 to 27 (Delta6-27p88 VacA) is able to inhibit many activities of wild-type VacA in a dominant-negative manner. Analysis of a panel of C-terminally truncated Delta6-27p88 VacA proteins indicated that a fragment containing amino acids 1 to 478 (Delta6-27p48) exhibited a dominant-negative phenotype similar to that of the full-length Delta6-27p88 VacA protein. In contrast, a shorter VacA fragment lacking amino acids 6 to 27 (Delta6-27p33) did not exhibit detectable inhibitory activity. The Delta6-27p48 protein physically interacted with wild-type p88 VacA, whereas the Delta6-27p33 protein did not. Mutational analysis indicated that amino acids 351 to 360 are required for VacA protein-protein interactions and for dominant-negative inhibitory activity. The C-terminal portion (p55 domain) of wild-type p88 VacA could complement either Delta6-27p33 or Delta(6-27/351-360)p48, reconstituting dominant-negative inhibitory activity. Collectively, our data provide strong evidence that the inhibitory properties of dominant-negative VacA mutant proteins are dependent on interactions between the mutant VacA proteins and wild-type VacA, and they allow mapping of a domain involved in the formation of oligomeric VacA complexes
PMCID:1418911
PMID: 16552038
ISSN: 0019-9567
CID: 90828
Functional properties of the p33 and p55 domains of the Helicobacter pylori vacuolating cytotoxin
Torres, Victor J; Ivie, Susan E; McClain, Mark S; Cover, Timothy L
Helicobacter pylori secretes an 88-kDa vacuolating cytotoxin (VacA) that may contribute to the pathogenesis of peptic ulcer disease and gastric cancer. VacA cytotoxic activity requires assembly of VacA monomers into oligomeric structures, formation of anion-selective membrane channels, and entry of VacA into host cells. In this study, we analyzed the functional properties of recombinant VacA fragments corresponding to two putative VacA domains (designated p33 and p55). Immunoprecipitation experiments indicated that these two domains can interact with each other to form protein complexes. In comparison to the individual VacA domains, a mixture of the p33 and p55 proteins exhibited markedly enhanced binding to the plasma membrane of mammalian cells. Furthermore, internalization of the VacA domains was detected when cells were incubated with the p33/p55 mixture but not when the p33 and p55 proteins were tested individually. Incubation of cells with the p33/p55 mixture resulted in cell vacuolation, whereas the individual domains lacked detectable cytotoxic activity. Interestingly, sequential addition of p55 followed by p33 resulted in VacA internalization and cell vacuolation, whereas sequential addition in the reverse order was ineffective. These results indicate that both the p33 and p55 domains contribute to the binding and internalization of VacA and that both domains are required for vacuolating cytotoxic activity. Reconstitution of toxin activity from two separate domains, as described here for VacA, has rarely been described for pore-forming bacterial toxins, which suggests that VacA is a pore-forming toxin with unique structural properties
PMID: 15817461
ISSN: 0021-9258
CID: 90825
Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion
Sundrud, Mark S; Torres, Victor J; Unutmaz, Derya; Cover, Timothy L
Recent evidence indicates that the secreted Helicobacter pylori vacuolating toxin (VacA) inhibits the activation of T cells. VacA blocks IL-2 secretion in transformed T cell lines by suppressing the activation of nuclear factor of activated T cells (NFAT). In this study, we investigated the effects of VacA on primary human CD4(+) T cells. VacA inhibited the proliferation of primary human T cells activated through the T cell receptor (TCR) and CD28. VacA-treated Jurkat T cells secreted markedly diminished levels of IL-2 compared with untreated cells, whereas VacA-treated primary human T cells continued to secrete high levels of IL-2. Further experiments indicated that the VacA-induced inhibition of primary human T cell proliferation was not attributable to VacA effects on NFAT activation or IL-2 secretion. We show here that VacA suppresses IL-2-induced cell-cycle progression and proliferation of primary human T cells without affecting IL-2-dependent survival. Through the analysis of a panel of mutant VacA proteins, we demonstrate that VacA-mediated inhibition of T cell proliferation requires an intact N-terminal hydrophobic region necessary for the formation of anion-selective membrane channels. Remarkably, we demonstrate that one of these mutant VacA proteins [VacA-Delta(6-27)] abrogates the immunosuppressive actions of wild-type VacA in a dominant-negative fashion. We suggest that VacA may inhibit the clonal expansion of T cells that have already been activated by H. pylori antigens, thereby allowing H. pylori to evade the adaptive immune response and establish chronic infection
PMCID:419674
PMID: 15128946
ISSN: 0027-8424
CID: 71105
Interactions between p-33 and p-55 domains of the Helicobacter pylori vacuolating cytotoxin (VacA)
Torres, Victor J; McClain, Mark S; Cover, Timothy L
The VacA toxin secreted by Helicobacter pylori is considered to be an important virulence factor in the pathogenesis of peptic ulcer disease and gastric cancer. VacA monomers self-assemble into water-soluble oligomeric structures and can form anion-selective membrane channels. The goal of this study was to characterize VacA-VacA interactions that may mediate assembly of VacA monomers into higher order structures. We investigated potential interactions between two domains of VacA (termed p-33 and p-55) by using a yeast two-hybrid system. p-33/p-55 interactions were detected in this system, whereas p-33/p-33 and p-55/p-55 interactions were not detected. Several p-33 proteins containing internal deletion mutations were unable to interact with wild-type p-55 in the yeast two-hybrid system. Introduction of these same deletion mutations into the H. pylori vacA gene resulted in secretion of mutant VacA proteins that failed to assemble into large oligomeric structures and that lacked vacuolating toxic activity for HeLa cells. Additional mapping studies in the yeast two-hybrid system indicated that only the N-terminal portion of the p-55 domain is required for p-33/p-55 interactions. To characterize further p-33/p-55 interactions, we engineered an H. pylori strain that produced a VacA toxin containing an enterokinase cleavage site located between the p-33 and p-55 domains. Enterokinase treatment resulted in complete proteolysis of VacA into p-33 and p-55 domains, which remained physically associated within oligomeric structures and retained vacuolating cytotoxin activity. These results provide evidence that interactions between p-33 and p-55 domains play an important role in VacA assembly into oligomeric structures
PMID: 14593124
ISSN: 0021-9258
CID: 90823
Functional analysis of the p33 and p55 domains of the Helicobacter pylori vacuolating cytotoxin
Torres, Victor J
[S.l. : s.n.], 2004
Extent: xii, 124 p.
ISBN: n/a
CID: 1938
Inactivation of a Helicobacter pylori DNA methyltransferase alters dnaK operon expression following host-cell adherence
Donahue, John P; Israel, Dawn A; Torres, Victor J; Necheva, Antoaneta S; Miller, Geraldine G
The Helicobacter pylori hpyIM gene encodes a type II DNA methyltransferase that is highly conserved among strains. To investigate the potential role of M.HpyI methyltransferase activity in controlling gene expression in H. pylori, we analyzed gene transcription profiles in wild-type strain J166 and an isogenic hpyIM mutant strain using gene arrays. This analysis showed that the expression of a majority of genes was unaffected by hpyIM mutation, especially in exponential phase cultures. However, in stationary phase cultures and in cells adherent to AGS gastric epithelial cells in vitro, loss of hpyIM function altered the expression of the stress-responsive dnaK operon. Complementation of the hpyIM mutation using a shuttle plasmid encoding a wild-type copy of the gene re-established the wild-type pattern of dnaK operon expression. These data suggested that hpyIM, encoding a DNA methyltransferase, may have a role in H. pylori physiology that supersedes its original function in a type II restriction-modification system
PMID: 11959452
ISSN: 0378-1097
CID: 90822