Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:at570

Total Results:

208


Predictive biomarkers of ipilimumab toxicity in metastatic melanoma [Meeting Abstract]

Gowen, M; Tchack, J; Zhou, H; Giles, K M; Paschke, S; Moran, U; Fenyo, D; Tsirigos, A; Pacold, M; Pavlick, A C; Krogsgaard, M; Osman, I
Background: There are no predictive biomarkers of ipilimumab (IPI) toxicity. Of metastatic melanoma (MM) patients (pts) receiving IPI (3mg/kg), 35% require systemic therapies to treat immune-related adverse events (irAEs) and 20% must terminate treatment (Horvat et al., JCO 2015). Here we tested the hypothesis that a pre-existing autoantibody (autoAb) profile is predictive of IPI irAEs. Methods: We measured autoAb levels in pre- and post-treatment sera from mm pts who received IPI (3mg/kg) monotherapy on a proteome microarray containing ~20,000 unique full-length human proteins (HuProt array, CDI Laboratories). Clinical data were prospectively collected with protocol-driven follow-up. IrAEs were categorized by CTCAE guidelines as none (grade 0), mild (grade 1-2), or severe (grade 3-4). AutoAb levels were standardized using median quantile normalization and considered positive hits if > 2-SD above the peak array signal and differed by >=2 fold with p < 0.05 between toxicity groups (Non-parametric Analysis/Wilcox test). Results: Seventy-eight sera from 37 mm pts were analyzed. Antibodies against CTLA-4 were significantly elevated post IPI treatment (p < 0.0001), validating the assay. The pre-treatment levels of 190 IgG autoAbs were significantly diferent in pts who experienced irAEs (n = 28) compared to those with no irAEs (n = 9). Comparison of severe irAE (n = 9) and no irAE (n = 9) groups revealed 129 IgG autoAbs that significantly differed in pre-treatment sera. Localization and pathway analysis (UniProt, KEGG, Reactome) showed 81/190 (43%) of the autoAbs targeted nuclear and mitochondrial antigens and were enriched in metabolic pathways (p = 0.015). AutoAbs associated with irAEs did not correlate with treatment response. Conclusions: AutoAbs to antigens enriched in metabolic pathways prior to treatment may predict IPI-induced toxicity in MM. The subcellular localization of targeted antigens could explain the autoimmune toxicities associated with IPI. Studies in larger cohorts and in pts receiving other checkpoint inhibitors and/or combination therapies are essential to determine the validity of the data. If validated, our results would support the discovery of the first toxicity predictor in cancer immunotherapy
EMBASE:617435374
ISSN: 0732-183x
CID: 2651122

lncRNA-screen: an interactive platform for computationally screening long non-coding RNAs in large genomics datasets

Gong, Yixiao; Huang, Hsuan-Ting; Liang, Yu; Trimarchi, Thomas; Aifantis, Iannis; Tsirigos, Aristotelis
BACKGROUND: Long non-coding RNAs (lncRNAs) have emerged as a class of factors that are important for regulating development and cancer. Computational prediction of lncRNAs from ultra-deep RNA sequencing has been successful in identifying candidate lncRNAs. However, the complexity of handling and integrating different types of genomics data poses significant challenges to experimental laboratories that lack extensive genomics expertise. RESULT: To address this issue, we have developed lncRNA-screen, a comprehensive pipeline for computationally screening putative lncRNA transcripts over large multimodal datasets. The main objective of this work is to facilitate the computational discovery of lncRNA candidates to be further examined by functional experiments. lncRNA-screen provides a fully automated easy-to-run pipeline which performs data download, RNA-seq alignment, assembly, quality assessment, transcript filtration, novel lncRNA identification, coding potential estimation, expression level quantification, histone mark enrichment profile integration, differential expression analysis, annotation with other type of segmented data (CNVs, SNPs, Hi-C, etc.) and visualization. Importantly, lncRNA-screen generates an interactive report summarizing all interesting lncRNA features including genome browser snapshots and lncRNA-mRNA interactions based on Hi-C data. CONCLUSION: lncRNA-screen provides a comprehensive solution for lncRNA discovery and an intuitive interactive report for identifying promising lncRNA candidates. lncRNA-screen is available as open-source software on GitHub.
PMCID:5458484
PMID: 28583068
ISSN: 1471-2164
CID: 2590412

LOW-GRADE ASTROCYTOMA CORE MUTATIONS IN IDH1, P53 AND ATRX COOPERATE TO BLOCK DIFFERENTIATION OF HUMAN NEURAL STEM CELLS VIA EPIGENETIC REPRESSION OF SOX2 [Meeting Abstract]

Modrek, Aram; Golub, Danielle; Khan, Themasap; Prado, Jod; Bowman, Christopher; Deng, Jingjing; Zhang, Guoan; Rocha, Pedro; Raviram, Ramya; Lazaris, Harris; Kader, Michael; Dhaliwal, Joravar; Chi, Andrew; Golfinos, John; Tsirigos, Aristotelis; Zagzag, David; Snuderl, Matija; Skok, Jane; Neubert, Thomas; Placantonakis, Dimitris
ISI:000402766800146
ISSN: 1523-5866
CID: 2591472

N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration

Rigoutsos, Isidore; Lee, Sang Kil; Nam, Su Youn; Anfossi, Simone; Pasculli, Barbara; Pichler, Martin; Jing, Yi; Rodriguez-Aguayo, Cristian; Telonis, Aristeidis G; Rossi, Simona; Ivan, Cristina; Catela Ivkovic, Tina; Fabris, Linda; Clark, Peter M; Ling, Hui; Shimizu, Masayoshi; Redis, Roxana S; Shah, Maitri Y; Zhang, Xinna; Okugawa, Yoshinaga; Jung, Eun Jung; Tsirigos, Aristotelis; Huang, Li; Ferdin, Jana; Gafa, Roberta; Spizzo, Riccardo; Nicoloso, Milena S; Paranjape, Anurag N; Shariati, Maryam; Tiron, Aida; Yeh, Jen Jen; Teruel-Montoya, Raul; Xiao, Lianchun; Melo, Sonia A; Menter, David; Jiang, Zhi-Qin; Flores, Elsa R; Negrini, Massimo; Goel, Ajay; Bar-Eli, Menashe; Mani, Sendurai A; Liu, Chang Gong; Lopez-Berestein, Gabriel; Berindan-Neagoe, Ioana; Esteller, Manel; Kopetz, Scott; Lanza, Giovanni; Calin, George A
BACKGROUND: Non-coding RNAs have been drawing increasing attention in recent years as functional data suggest that they play important roles in key cellular processes. N-BLR is a primate-specific long non-coding RNA that modulates the epithelial-to-mesenchymal transition, facilitates cell migration, and increases colorectal cancer invasion. RESULTS: We performed multivariate analyses of data from two independent cohorts of colorectal cancer patients and show that the abundance of N-BLR is associated with tumor stage, invasion potential, and overall patient survival. Through in vitro and in vivo experiments we found that N-BLR facilitates migration primarily via crosstalk with E-cadherin and ZEB1. We showed that this crosstalk is mediated by a pyknon, a short ~20 nucleotide-long DNA motif contained in the N-BLR transcript and is targeted by members of the miR-200 family. In light of these findings, we used a microarray to investigate the expression patterns of other pyknon-containing genomic loci. We found multiple such loci that are differentially transcribed between healthy and diseased tissues in colorectal cancer and chronic lymphocytic leukemia. Moreover, we identified several new loci whose expression correlates with the colorectal cancer patients' overall survival. CONCLUSIONS: The primate-specific N-BLR is a novel molecular contributor to the complex mechanisms that underlie metastasis in colorectal cancer and a potential novel biomarker for this disease. The presence of a functional pyknon within N-BLR and the related finding that many more pyknon-containing genomic loci in the human genome exhibit tissue-specific and disease-specific expression suggests the possibility of an alternative class of biomarkers and therapeutic targets that are primate-specific.
PMCID:5442648
PMID: 28535802
ISSN: 1474-760x
CID: 2574762

Defining cellular quiescence as a multi-drug resistance mechanism in squamous cell carcinoma [Meeting Abstract]

Brown, J; Yonekubo, Y; Tsirigos, A
ISI:000406862400131
ISSN: 1523-1747
CID: 2667002

HiC-bench: comprehensive and reproducible Hi-C data analysis designed for parameter exploration and benchmarking

Lazaris, Charalampos; Kelly, Stephen; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis
BACKGROUND: Chromatin conformation capture techniques have evolved rapidly over the last few years and have provided new insights into genome organization at an unprecedented resolution. Analysis of Hi-C data is complex and computationally intensive involving multiple tasks and requiring robust quality assessment. This has led to the development of several tools and methods for processing Hi-C data. However, most of the existing tools do not cover all aspects of the analysis and only offer few quality assessment options. Additionally, availability of a multitude of tools makes scientists wonder how these tools and associated parameters can be optimally used, and how potential discrepancies can be interpreted and resolved. Most importantly, investigators need to be ensured that slight changes in parameters and/or methods do not affect the conclusions of their studies. RESULTS: To address these issues (compare, explore and reproduce), we introduce HiC-bench, a configurable computational platform for comprehensive and reproducible analysis of Hi-C sequencing data. HiC-bench performs all common Hi-C analysis tasks, such as alignment, filtering, contact matrix generation and normalization, identification of topological domains, scoring and annotation of specific interactions using both published tools and our own. We have also embedded various tasks that perform quality assessment and visualization. HiC-bench is implemented as a data flow platform with an emphasis on analysis reproducibility. Additionally, the user can readily perform parameter exploration and comparison of different tools in a combinatorial manner that takes into account all desired parameter settings in each pipeline task. This unique feature facilitates the design and execution of complex benchmark studies that may involve combinations of multiple tool/parameter choices in each step of the analysis. To demonstrate the usefulness of our platform, we performed a comprehensive benchmark of existing and new TAD callers exploring different matrix correction methods, parameter settings and sequencing depths. Users can extend our pipeline by adding more tools as they become available. CONCLUSIONS: HiC-bench consists an easy-to-use and extensible platform for comprehensive analysis of Hi-C datasets. We expect that it will facilitate current analyses and help scientists formulate and test new hypotheses in the field of three-dimensional genome organization.
PMCID:5217551
PMID: 28056762
ISSN: 1471-2164
CID: 2386412

Genomic and Epigenetic Effects of DNA Methyltransferase Inhibition in Acute Lymphoblastic Leukemia [Meeting Abstract]

Saint Fleur-Lominy, Shella; Bhatla, Teena; Kelly, Stephen; Vasudevaraja, Varshini; Tsirigos, Aristotelis; Carroll, William L
ORIGINAL:0012451
ISSN: 1528-0020
CID: 2914662

ASTROCYTOMA MUTATIONS IDH1, p53 AND ATRX COOPERATE TO BLOCK DIFFERENTIATION OF NEURAL STEM CELLS VIA Sox2 [Meeting Abstract]

Modrek, Aram; Golub, Danielle; Khan, Themasap; Zhang, Guoan; Kader, Michael; Bowman, Christopher; Prado, Jod; Bayin, NSumru; Frenster, Joshua; Lhakhang, Tenzin; Heguy, Adriana; Dankert, John; Tsirigos, Aristotelis; Snuderl, Matija; Neubert, Thomas; Placantonakis, Dimitris
ISI:000398604104095
ISSN: 1523-5866
CID: 2545182

Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a

Strikoudis, Alexandros; Lazaris, Charalampos; Trimarchi, Thomas; Galvao Neto, Antonio L; Yang, Yan; Ntziachristos, Panagiotis; Rothbart, Scott; Buckley, Shannon; Dolgalev, Igor; Stadtfeld, Matthias; Strahl, Brian D; Dynlacht, Brian D; Tsirigos, Aristotelis; Aifantis, Iannis
Pluripotent embryonic stem cells (ESCs) self-renew or differentiate into all tissues of the developing embryo and cell-specification factors are necessary to balance gene expression. Here we delineate the function of the PHD-finger protein 5a (Phf5a) in ESC self-renewal and ascribe its role in regulating pluripotency, cellular reprogramming and myoblast specification. We demonstrate that Phf5a is essential for maintaining pluripotency, since depleted ESCs exhibit hallmarks of differentiation. Mechanistically, we attribute Phf5a function to the stabilization of the Paf1 transcriptional complex and control of RNA polymerase II elongation on pluripotency loci. Apart from an ESC-specific factor, we demonstrate that Phf5a controls differentiation of adult myoblasts. Our findings suggest a potent mode of regulation by Phf5a in stem cells, which directs their transcriptional programme, ultimately regulating maintenance of pluripotency and cellular reprogramming.
PMCID:5083132
PMID: 27749823
ISSN: 1476-4679
CID: 2279842

Epigenetics of decidual inflammation [Meeting Abstract]

Erlebacher, A; Siewiera, J; Dolgalev, I; Tagliani, E; Clementi, C; Columbus, D; Manandhar, P; Tsirigos, A; Nancy, P
Successful pregnancy requires delicate control over the immunological and inflammatory properties of the maternal/fetal interface. For example, inflammation within the pregnant uterus is likely to be a major instigator of preterm birth, while inadequate immune surveillance of the maternal/fetal interface likely increases the risk of fetal and placental infection. We will discuss our recent work on the molecular and cellular pathways that regulate immune cell trafficking and inflammation within the pregnant mouse uterus. This work points to the seminal importance of the decidua, i.e. the specialized endometrial stromal tissue that encases the implanted embryo, and in particular an epigenetic program active in decidual stromal cells that we previously found transcriptionally silences the expression of chemokine genes that control effector T cell trafficking. Our recent results suggest that this program also silences a multitude of other important genes, including ones whose misexpression might be expected to generate uterine inflammation and lead to a variety of pregnancy complications including preterm birth
EMBASE:615292605
ISSN: 1600-0897
CID: 2536172