Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:boekej01

Total Results:

489


Rapid identification of monospecific monoclonal antibodies using a human proteome microarray

Jeong, Jun Seop; Jiang, Lizhi; Albino, Edisa; Marrero, Josean; Rho, Hee Sool; Hu, Jianfei; Hu, Shaohui; Vera, Carlos; Bayron-Poueymiroy, Diane; Rivera-Pacheco, Zully Ann; Ramos, Leonardo; Torres-Castro, Cecil; Qian, Jiang; Bonaventura, Joseph; Boeke, Jef D; Yap, Wendy Y; Pino, Ignacio; Eichinger, Daniel J; Zhu, Heng; Blackshaw, Seth
To broaden the range of tools available for proteomic research, we generated a library of 16,368 unique full-length human ORFs that are expressible as N-terminal GST-His(6) fusion proteins. Following expression in yeast, these proteins were then individually purified and used to construct a human proteome microarray. To demonstrate the usefulness of this reagent, we developed a streamlined strategy for the production of monospecific monoclonal antibodies that used immunization with live human cells and microarray-based analysis of antibody specificity as its central components. We showed that microarray-based analysis of antibody specificity can be performed efficiently using a two-dimensional pooling strategy. We also demonstrated that our immunization and selection strategies result in a large fraction of monospecific monoclonal antibodies that are both immunoblot and immunoprecipitation grade. Our data indicate that the pipeline provides a robust platform for the generation of monoclonal antibodies of exceptional specificity.
PMCID:3433917
PMID: 22307071
ISSN: 1535-9476
CID: 571672

A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer

O'Donnell, Kathryn A; Keng, Vincent W; York, Brian; Reineke, Erin L; Seo, Daekwan; Fan, Danhua; Silverstein, Kevin A T; Schrum, Christina T; Xie, Wei Rose; Mularoni, Loris; Wheelan, Sarah J; Torbenson, Michael S; O'Malley, Bert W; Largaespada, David A; Boeke, Jef D
The Sleeping Beauty (SB) transposon mutagenesis system is a powerful tool that facilitates the discovery of mutations that accelerate tumorigenesis. In this study, we sought to identify mutations that cooperate with MYC, one of the most commonly dysregulated genes in human malignancy. We performed a forward genetic screen with a mouse model of MYC-induced liver cancer using SB-mediated mutagenesis. We sequenced insertions in 63 liver tumor nodules and identified at least 16 genes/loci that contribute to accelerated tumor development. RNAi-mediated knockdown in a liver progenitor cell line further validate three of these genes, Ncoa2/Src-2, Zfx, and Dtnb, as tumor suppressors in liver cancer. Moreover, deletion of Ncoa2/Src-2 in mice predisposes to diethylnitrosamine-induced liver tumorigenesis. These findings reveal genes and pathways that functionally restrain MYC-mediated liver tumorigenesis and therefore may provide targets for cancer therapy.
PMCID:3361419
PMID: 22556267
ISSN: 0027-8424
CID: 571582

Human transposon tectonics

Burns, Kathleen H; Boeke, Jef D
Mobile DNAs have had a central role in shaping our genome. More than half of our DNA is comprised of interspersed repeats resulting from replicative copy and paste events of retrotransposons. Although most are fixed, incapable of templating new copies, there are important exceptions to retrotransposon quiescence. De novo insertions cause genetic diseases and cancers, though reliably detecting these occurrences has been difficult. New technologies aimed at uncovering polymorphic insertions reveal that mobile DNAs provide a substantial and dynamic source of structural variation. Key questions going forward include how and how much new transposition events affect human health and disease.
PMCID:3370394
PMID: 22579280
ISSN: 0092-8674
CID: 571562

The Saccharomyces cerevisiae SCRaMbLE system and genome minimization

Dymond, Jessica; Boeke, Jef
We have recently reported the first partially synthetic eukaryotic genome. Saccharomyces cerevisiae chromosomes synIXR and semi-synVIL are fully synthetic versions of the right arm of chromosome IX and the telomeric segment of the left arm of chromosome VI, respectively, and represent the beginning of the synthetic yeast genome project, Sc2.0, that progressively replaces native yeast DNA with synthetic sequences. We have designed synthetic chromosome sequences according to principles specifying a wild-type phenotype, highly stable genome, and maintenance of genetic flexibility. Although other synthetic genome projects exist, the Sc2.0 approach is unique in that we have implemented design specifications predicted to generate a wild-type phenotype until induction of "SCRaMbLE," an inducible evolution system that generates significant genetic diversity. Here we further explore the significance of Sc2.0 and show how SCRaMbLE can serve as a genome minimization tool.
PMCID:3370935
PMID: 22572789
ISSN: 1949-1018
CID: 571572

The Saccharomyces cerevisiae Nrd1-Nab3 transcription termination pathway acts in opposition to Ras signaling and mediates response to nutrient depletion

Darby, Miranda M; Serebreni, Leo; Pan, Xuewen; Boeke, Jef D; Corden, Jeffry L
The Saccharomyces cerevisiae Nrd1-Nab3 pathway directs the termination and processing of short RNA polymerase II transcripts. Despite the potential for Nrd1-Nab3 to affect the transcription of both coding and noncoding RNAs, little is known about how the Nrd1-Nab3 pathway interacts with other pathways in the cell. Here we present the results of a high-throughput synthetic lethality screen for genes that interact with NRD1 and show roles for Nrd1 in the regulation of mitochondrial abundance and cell size. We also provide genetic evidence of interactions between the Nrd1-Nab3 and Ras/protein kinase A (PKA) pathways. Whereas the Ras pathway promotes the transcription of genes involved in growth and glycolysis, the Nrd1-Nab3 pathway appears to have a novel role in the rapid suppression of some genes when cells are shifted to poor growth conditions. We report the identification of new mRNA targets of the Nrd1-Nab3 pathway that are rapidly repressed in response to glucose depletion. Glucose depletion also leads to the dephosphorylation of Nrd1 and the formation of novel nuclear speckles that contain Nrd1 and Nab3. Taken together, these results indicate a role for Nrd1-Nab3 in regulating the cellular response to nutrient availability.
PMCID:3347421
PMID: 22431520
ISSN: 0270-7306
CID: 571602

Lysine succinylation and lysine malonylation in histones

Xie, Zhongyu; Dai, Junbiao; Dai, Lunzhi; Tan, Minjia; Cheng, Zhongyi; Wu, Yeming; Boeke, Jef D; Zhao, Yingming
Histone protein post-translational modifications (PTMs) are significant for gene expression and DNA repair. Here we report the identification and validation of a new type of PTM in histones, lysine succinylation. The identified lysine succinylated histone peptides were verified by MS/MS of synthetic peptides, HPLC co-elution, and isotopic labeling. We identified 13, 7, 10, and 7 histone lysine succinylation sites in HeLa, mouse embryonic fibroblast, Drosophila S2, and Saccharomyces cerevisiae cells, respectively. We demonstrated that this histone PTM is present in all eukaryotic cells we examined. Mutagenesis of succinylation sites followed by functional assays implied that histone lysine succinylation can cause unique functional consequences. We also identified one and two histone lysine malonylation sites in HeLa and S. cerevisiae cells, respectively. Our results therefore increase potential combinatorial diversity of histone PTMs and suggest possible new connections between histone biology and metabolism.
PMCID:3418837
PMID: 22389435
ISSN: 1535-9476
CID: 571612

Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2

Bheda, Poonam; Swatkoski, Stephen; Fiedler, Katherine L; Boeke, Jef D; Cotter, Robert J; Wolberger, Cynthia
Although the biological roles of many members of the sirtuin family of lysine deacetylases have been well characterized, a broader understanding of their role in biology is limited by the challenges in identifying new substrates. We present here an in vitro method that combines biotinylation and mass spectrometry (MS) to identify substrates deacetylated by sirtuins. The method permits labeling of deacetylated residues with amine-reactive biotin on the epsilon-nitrogen of lysine. The biotin can be utilized to purify the substrate and identify the deacetylated lysine by MS. The biotinyl-lysine method was used to compare deacetylation of chemically acetylated histones by the yeast sirtuins, Sir2 and Hst2. Intriguingly, Sir2 preferentially deacetylates histone H3 lysine 79 as compared to Hst2. Although acetylation of K79 was not previously reported in Saccharomyces cerevisiae, we demonstrate that a minor population of this residue is indeed acetylated in vivo and show that Sir2, and not Hst2, regulates the acetylation state of H3 lysine 79. The in vitro biotinyl-lysine method combined with chemical acetylation made it possible to identify this previously unknown, low-abundance histone acetyl modification in vivo. This method has further potential to identify novel sirtuin deacetylation substrates in whole cell extracts, enabling large-scale screens for new deacetylase substrates.
PMCID:3341040
PMID: 22474337
ISSN: 0027-8424
CID: 571592

Retrotransposon Ty1 integration targets specifically positioned asymmetric nucleosomal DNA segments in tRNA hotspots

Mularoni, Loris; Zhou, Yulian; Bowen, Tyson; Gangadharan, Sunil; Wheelan, Sarah J; Boeke, Jef D
The Saccharomyces cerevisiae genome contains about 35 copies of dispersed retrotransposons called Ty1 elements. Ty1 elements target regions upstream of tRNA genes and other Pol III-transcribed genes when retrotransposing to new sites. We used deep sequencing of Ty1-flanking sequence amplicons to characterize Ty1 integration. Surprisingly, some insertions were found in mitochondrial DNA sequences, presumably reflecting insertion into mitochondrial DNA segments that had migrated to the nucleus. The overwhelming majority of insertions were associated with the 5' regions of Pol III transcribed genes; alignment of Ty1 insertion sites revealed a strong sequence motif centered on but extending beyond the target site duplication. A strong sequence-independent preference for nucleosomal integration sites was observed, in distinction to the preferences of the Hermes DNA transposon engineered to jump in yeast and the Tf1 retrotransposon of Schizosaccharomyces pombe, both of which prefer nucleosome free regions. Remarkably, an exquisitely specific relationship between Ty1 integration and nucleosomal position was revealed by alignment of hotspot Ty1 insertion position regions to peak nucleosome positions, geographically implicating nucleosomal DNA segments at specific positions on the nucleosome lateral surface as targets, near the "bottom" of the nucleosome. The specificity is observed in the three tRNA 5'-proximal nucleosomes, with insertion frequency dropping off sharply 5' of the tRNA gene. The sites are disposed asymmetrically on the nucleosome relative to its dyad axis, ruling out several simple molecular models for Ty1 targeting, and instead suggesting association with a dynamic or directional process such as nucleosome remodeling associated with these regions.
PMCID:3317151
PMID: 22219510
ISSN: 1088-9051
CID: 571692

Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK

Lin, Yu-yi; Kiihl, Samara; Suhail, Yasir; Liu, Shang-Yun; Chou, Yi-hsuan; Kuang, Zheng; Lu, Jin-ying; Khor, Chin Ni; Lin, Chi-Long; Bader, Joel S; Irizarry, Rafael; Boeke, Jef D
First identified as histone-modifying proteins, lysine acetyltransferases (KATs) and deacetylases (KDACs) antagonize each other through modification of the side chains of lysine residues in histone proteins. Acetylation of many non-histone proteins involved in chromatin, metabolism or cytoskeleton regulation were further identified in eukaryotic organisms, but the corresponding enzymes and substrate-specific functions of the modifications are unclear. Moreover, mechanisms underlying functional specificity of individual KDACs remain enigmatic, and the substrate spectra of each KDAC lack comprehensive definition. Here we dissect the functional specificity of 12 critical human KDACs using a genome-wide synthetic lethality screen in cultured human cells. The genetic interaction profiles revealed enzyme-substrate relationships between individual KDACs and many important substrates governing a wide array of biological processes including metabolism, development and cell cycle progression. We further confirmed that acetylation and deacetylation of the catalytic subunit of the adenosine monophosphate-activated protein kinase (AMPK), a critical cellular energy-sensing protein kinase complex, is controlled by the opposing catalytic activities of HDAC1 and p300. Deacetylation of AMPK enhances physical interaction with the upstream kinase LKB1, leading to AMPK phosphorylation and activation, and resulting in lipid breakdown in human liver cells. These findings provide new insights into previously underappreciated metabolic regulatory roles of HDAC1 in coordinating nutrient availability and cellular responses upstream of AMPK, and demonstrate the importance of high-throughput genetic interaction profiling to elucidate functional specificity and critical substrates of individual human KDACs potentially valuable for therapeutic applications.
PMCID:3277212
PMID: 22318606
ISSN: 0028-0836
CID: 571662

Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling

Sims, Joshua J; Scavone, Francesco; Cooper, Eric M; Kane, Lesley A; Youle, Richard J; Boeke, Jef D; Cohen, Robert E
Polyubiquitin chain topology is thought to direct modified substrates to specific fates, but this function-topology relationship is poorly understood, as are the dynamics and subcellular locations of specific polyubiquitin signals. Experimental access to these questions has been limited because linkage-specific inhibitors and in vivo sensors have been unavailable. Here we present a general strategy to track linkage-specific polyubiquitin signals in yeast and mammalian cells, and to probe their functions. We designed several high-affinity Lys63 polyubiquitin-binding proteins and demonstrate their specificity in vitro and in cells. We apply these tools as competitive inhibitors to dissect the polyubiquitin-linkage dependence of NF-kappaB activation in several cell types, inferring the essential role of Lys63 polyubiquitin for signaling via the IL-1beta and TNF-related weak inducer of apoptosis (TWEAK) but not TNF-alpha receptors. We anticipate live-cell imaging, proteomic and biochemical applications for these tools and extension of the design strategy to other polymeric ubiquitin-like protein modifications.
PMCID:3438894
PMID: 22306808
ISSN: 1548-7091
CID: 571682