Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:boekej01

Total Results:

496


Influence of RNA structural elements on Ty1 retrotransposition

Purzycka, Katarzyna J; Garfinkel, David J; Boeke, Jef D; Le Grice, Stuart F J
The long-terminal repeat (LTR)-retrotransposon Ty1 is a mobile genetic element that replicates through an RNA intermediate. Retroelement genomic transcripts contain internal structures fundamental to gene expression and propagation. In addition, long non-coding antisense RNAs overlap the 5'-terminal region of the genomic RNA and confer post-translational copy number control. Although LTR- retrotransposons are functionally related to retroviruses, little is known about the structural determinants required for genomic RNA packaging or reverse transcription. This commentary summarizes two recent papers that provide the first snapshot of genomic RNA structures from the retrotransposon Ty1 involved in transposition. We combined structural approaches with functional and genetic assays to determine if antisense RNAs anneal with the genomic RNA. Analysis of various steps in the Ty1 life cycle showed that a novel RNA pseudoknot contributes to retrotransposon function. Comparing different RNA states provides additional information about regions potentially involved in Ty1 RNA dimerization or packaging.
PMCID:3681743
PMID: 23914314
ISSN: 2159-2543
CID: 571452

Retrotransposon Ty1 RNA contains a 5'-terminal long-range pseudoknot required for efficient reverse transcription

Huang, Qing; Purzycka, Katarzyna J; Lusvarghi, Sabrina; Li, Donghui; Legrice, Stuart F J; Boeke, Jef D
Ty1 retrotransposon RNA has the potential to fold into a variety of distinct structures, mutation of which affects retrotransposition frequencies. We show here that one potential functional structure is located at the 5' end of the genome and can assume a pseudoknot conformation. Chemoenzymatic probing of wild-type and mutant mini-Ty1 RNAs supports the existence of such a structure, while molecular genetic analyses show that mutations disrupting pseudoknot formation interfere with retrotransposition, indicating that it provides a critical biological function. These defects are enhanced at higher temperatures. When these mutants are combined with compensatory changes, retrotransposition is restored, consistent with pseudoknot architecture. Analyses of mutants suggest a defect in Ty1 reverse transcription. Collectively, our data allow modeling of a three-dimensional structure for this novel critical cis-acting signal of the Ty1 genome.
PMCID:3677243
PMID: 23329695
ISSN: 1355-8382
CID: 571512

Conserved structure and inferred evolutionary history of long terminal repeats (LTRs)

Benachenhou, Farid; Sperber, Goran O; Bongcam-Rudloff, Erik; Andersson, Goran; Boeke, Jef D; Blomberg, Jonas
BACKGROUND: Long terminal repeats (LTRs, consisting of U3-R-U5 portions) are important elements of retroviruses and related retrotransposons. They are difficult to analyse due to their variability.The aim was to obtain a more comprehensive view of structure, diversity and phylogeny of LTRs than hitherto possible. RESULTS: Hidden Markov models (HMM) were created for 11 clades of LTRs belonging to Retroviridae (class III retroviruses), animal Metaviridae (Gypsy/Ty3) elements and plant Pseudoviridae (Copia/Ty1) elements, complementing our work with Orthoretrovirus HMMs. The great variation in LTR length of plant Metaviridae and the few divergent animal Pseudoviridae prevented building HMMs from both of these groups.Animal Metaviridae LTRs had the same conserved motifs as retroviral LTRs, confirming that the two groups are closely related. The conserved motifs were the short inverted repeats (SIRs), integrase recognition signals (5 TGTTRNR...YNYAACA 3 ); the polyadenylation signal or AATAAA motif; a GT-rich stretch downstream of the polyadenylation signal; and a less conserved AT-rich stretch corresponding to the core promoter element, the TATA box. Plant Pseudoviridae LTRs differed slightly in having a conserved TATA-box, TATATA, but no conserved polyadenylation signal, plus a much shorter R region.The sensitivity of the HMMs for detection in genomic sequences was around 50% for most models, at a relatively high specificity, suitable for genome screening.The HMMs yielded consensus sequences, which were aligned by creating an HMM model (a 'Superviterbi' alignment). This yielded a phylogenetic tree that was compared with a Pol-based tree. Both LTR and Pol trees supported monophyly of retroviruses. In both, Pseudoviridae was ancestral to all other LTR retrotransposons. However, the LTR trees showed the chromovirus portion of Metaviridae clustering together with Pseudoviridae, dividing Metaviridae into two portions with distinct phylogeny. CONCLUSION: The HMMs clearly demonstrated a unitary conserved structure of LTRs, supporting that they arose once during evolution. We attempted to follow the evolution of LTRs by tracing their functional foundations, that is, acquisition of RNAse H, a combined promoter/ polyadenylation site, integrase, hairpin priming and the primer binding site (PBS). Available information did not support a simple evolutionary chain of events.
PMCID:3601003
PMID: 23369192
ISSN: 1759-8753
CID: 571502

Using functional proteome microarrays to study protein lysine acetylation

Lu, Jin-Ying; Lin, Yu-Yi; Boeke, Jef D; Zhu, Heng
Emergence of proteome microarray provides a versatile platform to globally explore biological functions of broad significance. In the past decade, researchers have successfully fabricated functional proteome microarrays by printing individually purified proteins at a high-throughput, proteome-wide scale on one single slide. These arrays have been used to profile protein posttranslational modifications, including phosphorylation, ubiquitylation, acetylation, and nitrosylation. In this chapter, we summarize our work of using the yeast proteome microarrays to connect protein lysine acetylation substrates to their upstream modifying enzyme, the nucleosome acetyltransferase of H4 (NuA4), which is the only essential acetyltransferase in yeast. We further prove that the reversible acetylation on critical cell metabolism-related enzymes controls life span in yeast. Our studies represent a paradigm shift for the functional dissection of a crucial acetylation enzyme affecting aging and longevity pathways.
PMID: 23381860
ISSN: 1064-3745
CID: 571492

Mapping mobile DNAs in human cancer cell lines [Meeting Abstract]

Zampella, John G; Yang, Wan Rho; Rodic, Nemanja; Huang, Cheng Ran Lisa; Welch, Jane; Gnanakkan, Veena P; Cornish, Toby C; Boeke, Jef D; Burns, Kathleen H
ORIGINAL:0012282
ISSN: 1538-7445
CID: 2726672

Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation

Dai, Lixin; Taylor, Martin S; O'Donnell, Kathryn A; Boeke, Jef D
Poly(A) binding proteins (PABPs) specifically bind the polyadenosine tail of mRNA and have been shown to be important for RNA polyadenylation, translation initiation, and mRNA stability. Using a modified L1 retrotransposition vector, we examined the effects of two PABPs (encoded by PABPN1 and PABPC1) on the retrotransposition activity of the L1 non-long-terminal-repeat (non-LTR) retrotransposon in both HeLa and HEK293T cells. We demonstrated that knockdown of these two genes by RNA interference (RNAi) effectively reduced L1 retrotransposition by 70 to 80% without significantly changing L1 transcription or translation or the status of the poly(A) tail. We identified that both poly(A) binding proteins were associated with the L1 ribonucleoprotein complex, presumably through L1 mRNA. Depletion of PABPC1 caused a defect in L1 RNP formation. Knockdown of the PABPC1 inhibitor PAIP2 increased L1 retrotransposition up to 2-fold. Low levels of exogenous overexpression of PABPN1 and PABPC1 increased L1 retrotransposition, whereas unregulated overexpression of these two proteins caused pleiotropic effects, such as hypersensitivity to puromycin and decreased L1 activity. Our data suggest that PABPC1 is essential for the formation of L1 RNA-protein complexes and may play a role in L1 RNP translocation in the host cell.
PMCID:3486150
PMID: 22907758
ISSN: 0270-7306
CID: 571552

Live-cell studies of p300/CBP histone acetyltransferase activity and inhibition

Dancy, Beverley M; Crump, Nicholas T; Peterson, Daniel J; Mukherjee, Chandrani; Bowers, Erin M; Ahn, Young-Hoon; Yoshida, Minoru; Zhang, Jin; Mahadevan, Louis C; Meyers, David J; Boeke, Jef D; Cole, Philip A
Histone acetyltransferase enzymes (HATs) are important therapeutic targets, but there are few cell-based assays available for evaluating the pharmacodynamics of HAT inhibitors. Here we present the application of a FRET-based reporter, Histac, in live-cell studies of p300/CBP HAT inhibition, by both genetic and pharmacologic disruption. shRNA knockdown of p300/CBP led to increased Histac FRET, thus suggesting a role for p300/CBP in the acetylation of the histone H4 tail. Additionally, we describe a new p300/CBP HAT inhibitor, C107, and show that it can also increase cellular Histac FRET. Taken together, these studies provide a live-cell strategy for identifying and evaluating p300/CBP inhibitors.
PMCID:3517098
PMID: 22961914
ISSN: 1439-4227
CID: 571542

Rapid identification of monospecific monoclonal antibodies using a human proteome microarray

Jeong, Jun Seop; Jiang, Lizhi; Albino, Edisa; Marrero, Josean; Rho, Hee Sool; Hu, Jianfei; Hu, Shaohui; Vera, Carlos; Bayron-Poueymiroy, Diane; Rivera-Pacheco, Zully Ann; Ramos, Leonardo; Torres-Castro, Cecil; Qian, Jiang; Bonaventura, Joseph; Boeke, Jef D; Yap, Wendy Y; Pino, Ignacio; Eichinger, Daniel J; Zhu, Heng; Blackshaw, Seth
To broaden the range of tools available for proteomic research, we generated a library of 16,368 unique full-length human ORFs that are expressible as N-terminal GST-His(6) fusion proteins. Following expression in yeast, these proteins were then individually purified and used to construct a human proteome microarray. To demonstrate the usefulness of this reagent, we developed a streamlined strategy for the production of monospecific monoclonal antibodies that used immunization with live human cells and microarray-based analysis of antibody specificity as its central components. We showed that microarray-based analysis of antibody specificity can be performed efficiently using a two-dimensional pooling strategy. We also demonstrated that our immunization and selection strategies result in a large fraction of monospecific monoclonal antibodies that are both immunoblot and immunoprecipitation grade. Our data indicate that the pipeline provides a robust platform for the generation of monoclonal antibodies of exceptional specificity.
PMCID:3433917
PMID: 22307071
ISSN: 1535-9476
CID: 571672

A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer

O'Donnell, Kathryn A; Keng, Vincent W; York, Brian; Reineke, Erin L; Seo, Daekwan; Fan, Danhua; Silverstein, Kevin A T; Schrum, Christina T; Xie, Wei Rose; Mularoni, Loris; Wheelan, Sarah J; Torbenson, Michael S; O'Malley, Bert W; Largaespada, David A; Boeke, Jef D
The Sleeping Beauty (SB) transposon mutagenesis system is a powerful tool that facilitates the discovery of mutations that accelerate tumorigenesis. In this study, we sought to identify mutations that cooperate with MYC, one of the most commonly dysregulated genes in human malignancy. We performed a forward genetic screen with a mouse model of MYC-induced liver cancer using SB-mediated mutagenesis. We sequenced insertions in 63 liver tumor nodules and identified at least 16 genes/loci that contribute to accelerated tumor development. RNAi-mediated knockdown in a liver progenitor cell line further validate three of these genes, Ncoa2/Src-2, Zfx, and Dtnb, as tumor suppressors in liver cancer. Moreover, deletion of Ncoa2/Src-2 in mice predisposes to diethylnitrosamine-induced liver tumorigenesis. These findings reveal genes and pathways that functionally restrain MYC-mediated liver tumorigenesis and therefore may provide targets for cancer therapy.
PMCID:3361419
PMID: 22556267
ISSN: 0027-8424
CID: 571582

Human transposon tectonics

Burns, Kathleen H; Boeke, Jef D
Mobile DNAs have had a central role in shaping our genome. More than half of our DNA is comprised of interspersed repeats resulting from replicative copy and paste events of retrotransposons. Although most are fixed, incapable of templating new copies, there are important exceptions to retrotransposon quiescence. De novo insertions cause genetic diseases and cancers, though reliably detecting these occurrences has been difficult. New technologies aimed at uncovering polymorphic insertions reveal that mobile DNAs provide a substantial and dynamic source of structural variation. Key questions going forward include how and how much new transposition events affect human health and disease.
PMCID:3370394
PMID: 22579280
ISSN: 0092-8674
CID: 571562