Searched for: in-biosketch:yes
person:littmd01
Lymphoid tissue inducer cells in intestinal immunity
Ivanov, I I; Diehl, G E; Littman, D R
During fetal development, lymphoid tissue inducer cells (LTis) seed the developing lymph node and Peyer's patch anlagen and initiate the formation of both types of lymphoid organs. In the adult, a similar population of cells, termed lymphoid tissue inducer-like cells (LTi-like cells), supports the formation of organized gut-associated lymphoid tissue (GALT) in the intestine, including both isolated lymphoid follicles (ILFs) and cryptopatches (CPs). Both LTi and LTi-like cells require expression of the transcription factor RORgammat for their differentiation and function, and mice lacking RORgammat lack lymph nodes, Peyer's patches, and other organized GALT. In ILFs and cryptopatches, LTi-like cells are in close contact with different populations of intestinal dendritic cells (DCs), including a subpopulation recently shown to extend dendrites and sample luminal microflora. This interaction may allow for communication between the intestinal lumen and the immune cells in the lamina propria, which is necessary for maintaining homeostasis between the commensal microflora and the intestinal immune system. The potential functional implications of the organization of LTi-like cells, DCs, and lymphocytes in the lamina propria are discussed in the context of maintenance of homeostasis and of infectious diseases, particularly HIV infection
PMID: 16922086
ISSN: 0070-217x
CID: 68779
Mice deficient in the chemokine receptor CXCR4 exhibit impaired limb innervation and myogenesis
Odemis, Veysel; Lamp, Elke; Pezeshki, Gita; Moepps, Barbara; Schilling, Karl; Gierschik, Peter; Littman, Dan R; Engele, Jurgen
The chemokine CXCL12/SDF-1 and its receptor CXCR4 regulate the development and the function of the hematopoietic system and control morphogenesis of distinct brain areas. Here, we demonstrate that inactivation of CXCR4 results in a massive loss of spinal cord motoneurons and dorsal root ganglion neurons and, subsequently, in a reduced innervation of the developing mouse fore- and hindlimbs. However, only the death of sensory neurons seems to be a direct consequence of receptor inactivation as suggested by the observations that DRG neurons, but not motoneurons, of wild-type animals express CXCR4 and respond to CXCL12 with an increase in cell survival. In contrast, the increased death of motoneurons in CXCR4-deficient animals seems to result from impaired limb myogenesis and a subsequent loss of muscle-derived neurotrophic support. In summary, our findings unravel a previously unrecognized complex role of CXCL12/CXCR4 in the control of limb neuromuscular development
PMID: 16198599
ISSN: 1044-7431
CID: 69509
CD11chigh dendritic cell ablation impairs lymphopenia-driven proliferation of naive and memory CD8+ T cells
Zaft, Tami; Sapoznikov, Anita; Krauthgamer, Rita; Littman, Dan R; Jung, Steffen
The peripheral lymphocyte pool size is governed by homeostatic mechanisms. Thus, grafted T cells expand and replenish T cell compartments in lymphopenic hosts. Lymphopenia-driven proliferation of naive CD8+ T cells depends on self-peptide/MHC class I complexes and the cytokine IL-7. Lymphopenia-driven proliferation and maintenance of memory CD8+ T cells are MHC independent, but are believed to require IL-7 and contact with a bone marrow-derived cell that presents the cytokine IL-15 by virtue of its high affinity receptor (IL-15Ralpha). In this study we show that optimal spontaneous proliferation of grafted naive and memory CD8+ T cells in mice rendered lymphopenic through gene ablation or irradiation requires the presence of CD11chigh dendritic cells. Our results suggest a dual role of CD11chigh dendritic cells as unique APC and cytokine-presenting cells
PMID: 16272295
ISSN: 0022-1767
CID: 69507
The SDF-1/CXCR4 pathway and the development of the cerebellar system
Vilz, Tim O; Moepps, Barbara; Engele, Jurgen; Molly, Sabine; Littman, Dan R; Schilling, Karl
Mice deficient for the chemokine receptor CXCR4 show premature translocation of granule cell neuroblasts from their germinal zone into the nascent cerebellum [Y.-R. Zuo et al. (1998) Nature, 393, 595-599]. Here, we used CXCR4-null mice to analyse the early development of cerebellar cortical inhibitory interneurons and pontine neurons which, in the adult, are synaptically integrated with granule cells. Cortical inhibitory interneuronal precursors normally invade the cerebellar anlage of CXCR4-deficient mice, but their dispersal is impeded by dislocated foci of proliferating granule cells, from which they are excluded. This is reminiscent of the strict exclusion of inhibitory interneuronal precursors from the superficial external granule cell layer. As inhibitory interneuronal precursors readily mingle with post-mitotic granule cells both in wild-type and CXCR4-null mice, these findings indicate that the developmentally regulated interactions between granule and inhibitory interneuronal precursors are independent of SDF-1/CXCR4 signalling. In contrast, the transit of pontine neurons from the rhombic lip through the anterior extramural stream to the basilar pons is disrupted in CXCR4-deficient animals. Migrating pontine neurons express CXCR4, and in CXCR4-null animals these cells are found displaced deep into the brainstem. Consequently, nascent pontine nuclei in CXCR4-deficient animals are hypoplastic. Moreover, they fail to express plexin D1, suggesting that SDF-1/CXCR4 signalling may also impinge on axon guidance critical to the orderly formation of granule cell mossy fibre afferents
PMID: 16262623
ISSN: 0953-816X
CID: 69508
Runx3 regulates integrin alpha E/CD103 and CD4 expression during development of CD4-/CD8+ T cells
Grueter, Baerbel; Petter, Michaela; Egawa, Takeshi; Laule-Kilian, Kirsten; Aldrian, Christine J; Wuerch, Andreas; Ludwig, Yvonne; Fukuyama, Hidehiro; Wardemann, Hedda; Waldschuetz, Ralph; Moroy, Tarik; Taniuchi, Ichiro; Steimle, Viktor; Littman, Dan R; Ehlers, Marc
During thymic T cell development, immature CD4+CD8+ double-positive (DP) thymocytes develop either into CD4+CD8- Th cells or CD4-CD8+ CTLs. Differentially expressed primary factors inducing the fate of these cell types are still poorly described. The transcription factor Runx3/AML-2 Runx, runt [corrected] dominant factor; AML, acute myeloid leukemia is expressed specifically during the development of CD8 single-positive (SP) thymocytes, where it silences CD4 expression. Deletion of murine Runx3 results in a reduction of CD8 SP T cells and concomitant accumulation of CD4+CD8+ T cells, which cannot down-regulate CD4 expression in the thymus and periphery. In this study we have investigated the role of Runx3 during thymocyte development and CD4 silencing and have identified integrin alpha(E)/CD103 on CD8 SP T cells as a new potential target gene of Runx3. We demonstrate that Runx3 is necessary not only to repress CD4, but also to induce CD103 expression during development of CD8 SP T cells. In addition, transgenic overexpression of Runx3 reduced CD4 expression during development of DP thymocytes, leading to a reduced number of CD4 SP thymocytes and an increased number of CD8 SP thymocytes. This reversal is not caused by redirection of specific MHC class II-restricted cells to the CD8 lineage. Overexpression of Runx3 also up-regulated CD103 expression on a subpopulation of CD4 SP T cells with characteristics of regulatory T cells. Thus, Runx3 is a main regulator of CD4 silencing and CD103 induction and thus contributes to the phenotype of CD8 SP T cells during thymocyte development
PMID: 16034110
ISSN: 0022-1767
CID: 69510
Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle
Wang, Xiaoxia; Blagden, Chris; Fan, Jihua; Nowak, Scott J; Taniuchi, Ichiro; Littman, Dan R; Burden, Steven J
Disruptions in the use of skeletal muscle lead to muscle atrophy. After short periods of disuse, muscle atrophy is reversible, and even after prolonged periods of inactivity, myofiber degeneration is uncommon. The pathways that regulate atrophy, initiated either by peripheral nerve damage, immobilization, aging, catabolic steroids, or cancer cachexia, however, are poorly understood. Previously, we found that Runx1 (AML1), a DNA-binding protein that is homologous to Drosophila Runt and has critical roles in hematopoiesis and leukemogenesis, is poorly expressed in innervated muscle, but strongly induced in muscle shortly after denervation. To determine the function of Runx1 in skeletal muscle, we generated mice in which Runx1 was selectively inactivated in muscle. Here, we show that Runx1 is required to sustain muscle by preventing denervated myofibers from undergoing myofibrillar disorganization and autophagy, structural defects found in a variety of congenital myopathies. We find that only 29 genes, encoding ion channels, signaling molecules, and muscle structural proteins, depend upon Runx1 expression, suggesting that their misregulation causes the dramatic muscle wasting. These findings demonstrate an unexpected role for electrical activity in regulating muscle wasting, and indicate that muscle disuse induces compensatory mechanisms that limit myofiber atrophy. Moreover, these results suggest that reduced muscle activity could cause or contribute to congenital myopathies if Runx1 or its target genes were compromised
PMCID:1176009
PMID: 16024660
ISSN: 0890-9369
CID: 57720
Selection and lineage specification in the thymus: commitment 4-stalled [Comment]
Collins, Amelie; Littman, Dan R
How CD4(+)CD8(+) thymocytes commit to CD4 helper versus CD8 cytotoxic lineages is a central unresolved question in developmental immunology. In this issue, show that engineering CD4 for shutoff immediately after positive selection misdirects cells to the cytotoxic lineage. The result highlights the distinction between positive selection and lineage commitment and provides new impetus for reexamining lineage models
PMID: 16039574
ISSN: 1074-7613
CID: 57847
Response to comment on "Thymic origin of intestinal up T cells revealed by fate mapping of ROR gamma t(+) cells" [Letter]
Eberl, G; Littman, DR
ISI:000229827000023
ISSN: 0036-8075
CID: 55929
ATP mediates rapid microglial response to local brain injury in vivo
Davalos, Dimitrios; Grutzendler, Jaime; Yang, Guang; Kim, Jiyun V; Zuo, Yi; Jung, Steffen; Littman, Dan R; Dustin, Michael L; Gan, Wen-Biao
Parenchymal microglia are the principal immune cells of the brain. Time-lapse two-photon imaging of GFP-labeled microglia demonstrates that the fine termini of microglial processes are highly dynamic in the intact mouse cortex. Upon traumatic brain injury, microglial processes rapidly and autonomously converge on the site of injury without cell body movement, establishing a potential barrier between the healthy and injured tissue. This rapid chemotactic response can be mimicked by local injection of ATP and can be inhibited by the ATP-hydrolyzing enzyme apyrase or by blockers of G protein-coupled purinergic receptors and connexin channels, which are highly expressed in astrocytes. The baseline motility of microglial processes is also reduced significantly in the presence of apyrase and connexin channel inhibitors. Thus, extracellular ATP regulates microglial branch dynamics in the intact brain, and its release from the damaged tissue and surrounding astrocytes mediates a rapid microglial response towards injury
PMID: 15895084
ISSN: 1097-6256
CID: 56024
Genetic evidence supporting selection of the Valpha14i NKT cell lineage from double-positive thymocyte precursors
Egawa, Takeshi; Eberl, Gerard; Taniuchi, Ichiro; Benlagha, Kamel; Geissmann, Frederic; Hennighausen, Lothar; Bendelac, Albert; Littman, Dan R
Invariant Valpha14i NKT (iNKT) cells are a specialized subset of T lymphocytes with regulatory functions. They coexpress TCRalphabeta and natural killer cell markers. They differentiate through interaction of their Valpha14-Jalpha18 invariant TCRalpha chains with CD1d expressed on double-positive (DP) thymocytes. Although their development has been shown to be thymus dependent, their developmental pathway has not been definitively established. By using genetic analyses, we show here that all iNKT cells are selected from a pool of DP thymocytes. Their development is absolutely dependent on Runx1 and ROR(gamma)t, transcription factors that influence, but are not required for, development of conventional T cells. Our results indicate that even though CD1d binding DP thymocytes have yet to be observed, Valpha14-Jalpha18 rearrangement in these cells is required for development of iNKT cells
PMID: 15963785
ISSN: 1074-7613
CID: 69511