Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:schner01

Total Results:

188


Cap-binding protein (eukaryotic initiation factor 4E) and 4E-inactivating protein BP-1 independently regulate cap-dependent translation

Feigenblum D; Schneider RJ
Cap-dependent protein synthesis in animal cells is inhibited by heat shock, serum deprivation, metaphase arrest, and infection with certain viruses such as adenovirus (Ad). At a mechanistic level, translation of capped mRNAs is inhibited by dephosphorylation of eukaryotic initiation factor 4E (eIF-4E) (cap-binding protein) and its physical sequestration with the translation repressor protein BP-1 (PHAS-I). Dephosphorylation of BP-I blocks cap-dependent translation by promoting sequestration of eIF-4E. Here we show that heat shock inhibits translation of capped mRNAs by simultaneously inducing dephosphorylation of eIF-4E and BP-1, suggesting that cells might coordinately regulate translation of capped mRNAs by impairing both the activity and the availability of eIF-4E. Like heat shock, late Ad infection is shown to induce dephosphorylation of eIF-4E. However, in contrast to heat shock, Ad also induces phosphorylation of BP-1 and release of eIF-4E. BP-1 and eIF-4E can therefore act on cap-dependent translation in either a mutually antagonistic or cooperative manner. Three sets of experiments further underscore this point: (i) rapamycin is shown to block phosphorylation of BP-1 without inhibiting dephosphorylation of eIF-4E induced by heat shock or Ad infection, (ii) eIF-4E is efficiently dephosphorylated during heat shock or Ad infection regardless of whether it is in a complex with BP-1, and (iii) BP-1 is associated with eIF-4E in vivo regardless of the state of eIF-4E phosphorylation. These and other studies establish that inhibition of cap-dependent translation does not obligatorily involve sequestration of eIF-4E by BP-1. Rather, translation is independently regulated by the phosphorylation states of eIF-4E and the 4E-binding protein, BP-1. In addition, these results demonstrate that BP-1 and eIF-4E can act either in concert or in opposition to independently regulate cap-dependent translation. We suggest that independent regulation of eIF-4E and BP-1 might finely regulate the efficiency of translation initiation or possibly control cap-dependent translation for fundamentally different purposes
PMCID:231545
PMID: 8816458
ISSN: 0270-7306
CID: 7069

Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases

Benn J; Su F; Doria M; Schneider RJ
The HBx protein of hepatitis B virus is a dual-specificity activator of transcription, stimulating signal transduction pathways in the cytoplasm and transcription factors in the nucleus, when expressed in cell lines in culture. In the cytoplasm, HBx was shown to stimulate the Ras-Raf-mitogen-activated protein kinase (MAP kinase) cascade, which is essential for activation of transcription factor AP-1. Here we show that HBx protein stimulates two independently regulated members of the MAP kinase family when expressed transiently in cells. HBx protein stimulates the extracellular signal-regulated kinases (ERKs) and the c-Jun N-terminal kinases (JNKs). HBx activation of ERKs and JNKs leads to induction and activation of AP-1 DNA binding activity involving transient de novo synthesis of c-Fos protein and prolonged synthesis of c-Jun, mediated by N-terminal phosphorylation of c-Jun carried out by HBx-activated JNK. New c-Jun synthesis was blocked by coexpression with a dominant-negative MAP kinase kinase (MEK kinase, MEKK-1), confirming that HBx stimulates the prolonged synthesis of c-Jun by activating JNK signalling pathways. Activation of the c-fos gene was blocked by coexpression with a Raf-C4 catalytic mutant, confirming that HBx induces c-Fos by acting on Ras-Raf linked pathways. HBx activation of ERK and JNK pathways resulted in prolonged accumulation of AP-1-c-Jun dimer complexes. HBx activation of JNK and sustained activation of c-jun, should they occur in the context of hepatitis B virus infection, might play a role in viral transformation and pathogenesis
PMCID:190451
PMID: 8764004
ISSN: 0022-538x
CID: 6980

Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins

Su F; Schneider RJ
The HBx protein is a small polypeptide encoded by mammalian hepadnaviruses that is essential for viral infectivity and is thought to play a role in development of hepatocellular carcinoma during chronic hepatitis B virus infection. HBx is a transactivator that stimulates Ras signal transduction pathways in the cytoplasm and certain transcription elements in the nucleus. To better understand the activities of HBx protein and its mechanism of action, we have explored the manner by which HBx activates the transcription factor NF-kappaB during transient expression. We show that HBx induces prolonged formation, in a Ras-dependent manner, of transcriptionally active NF-kappaB DNA-binding complexes, which make up the family of Rel-related proteins, p50, p52, RelA, and c-Rel. HBx was found to activate NF-kappaB through two distinct cytoplasmic pathways by acting on both the 37-kDa IkappaBalpha inhibitor and the 105-kappaDa NF-kappaB1 precursor inhibitor protein, known as p105. HBx induces phosphorylation of IkappaBalpha, a three- to fourfold reduction in IKBalpha stability, and concomitant nuclear accumulation of NF-kappaB DNA-binding complexes, similar to that reported for human T-cell leukemia virus type 1 Tax protein. In addition, HBx mediates a striking reduction in cytoplasmic p105 NF-kappaB1 inhibitor and p50 protein levels and release of RelA protein that was sequestered by the p105 inhibitor, concomitant with nuclear accumulation of NF-kappaB complexes. HBx mediated only a slight reduction in the cytoplasmic levels of NF-kappaB2 p100 protein, an additional precursor inhibitor of NF-kappaB, which is thought to be less efficiently processed or less responsive to release of NF-kappaB. No evidence was found for HBx activation of NF-kappaB by targeting acidic sphingomyelinase- controlled pathways. Studies also suggest that stimulation of NF-kappaB by HBx does not involve activation of Ras via the neutral sphingomyelin-ceramide pathway. Thus, HBx protein is shown to activate the NF-kappaB family of Rel-related proteins by acting on two distinct NF-kappaB cytoplasmic inhibitors
PMCID:190392
PMID: 8676482
ISSN: 0022-538x
CID: 8015

Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells

Yueh A; Schneider RJ
Translation initiation on eukaryotic mRNAs usually occurs by 5'-processive scanning of 40S ribosome subunits from the m7GTP-cap to the initiating AUG. In contrast, picornavirus and some specialized mRNAS initiate translation by internally binding ribosomes. A poorly described third mechanism of initiation, referred to as ribosome shunting or jumping, involves discontinuous scanning by 40S ribosome subunits, in which large segments of the 5' noncoding region are bypassed. Ribosome shunting has only been observed to date on a cauliflower mosaic virus mRNA. In this report we show that the family of adenovirus late mRNAs, which are preferentially translated during infection, use a ribosome jumping mechanism to initiate protein synthesis. Late adenovirus mRNAs contain a common 5'-noncoding region known as the tripartite leader, which confers preferential translation by reducing the requirement for the rate-limiting initiation factor eIF-4F (cap-binding protein complex). Adenovirus inhibits cell protein synthesis largely by inactivating eIF-4F. We show that the tripartite leader directs both 5' linear ribosome scanning and ribosome jumping when eIF-4F is abundant but exclusively uses a ribosome jumping mechanism during late adenovirus infection or heat shock (stress) of mammalian cells, when eIF-4F is altered or inactivated. Shunting is directed by a complex group of secondary structures in the tripartite leader and is facilitated by one or more unidentified viral late gene products. We propose that shunting may represent a widespread mechanism to facilitate selective translation of specialized classes of capped mRNAs, including some stress and developmentally regulated mRNAs, which possess little requirement for eIF-4F but do not initiate by internal ribosome binding
PMID: 8666238
ISSN: 0890-9369
CID: 8018

Rapid degradation of AU-rich element (ARE) mRNAs is activated by ribosome transit and blocked by secondary structure at any position 5' to the ARE

Curatola AM; Nadal MS; Schneider RJ
The 3' noncoding region (NCR) AU-rich element (ARE) selectively confers rapid degradation on many mRNAs via a process requiring translation of the message. The role of cotranslation in destabilization of ARE mRNAs was examined by insertion of translation-blocking stable secondary structure at different sites in test mRNAs containing either the granulocyte-macrophage colony-stimulating factor (GM-CSF) ARE or a control sequence. A strong (-80 kcal/mol [1 kcal = 4.184 kJ]) but not a moderate (-30 kcal/mol) secondary structure prevented destabilization of mRNAs when inserted at any position upstream of the ARE, including in the 3' NCR. Surprisingly, a strong secondary structure did not block rapid mRNA decay when placed immediately downstream of the ARE. Studies are also presented showing that the turnover of mRNAs containing control or ARE sequences is not altered by insertion of long (1,000-nucleotide) intervening segments between the stop codon and the ARE or between the ARE and poly(A) tail. Characterization of ARE-containing mRNAs in polyadenylated and whole cytoplasmic RNA fractions failed to find evidence for decay intermediates degraded to the site of strong secondary structure from either the 5' or 3' end. From these and other data presented, this study demonstrates that complete translation of the coding region is essential for activation of rapid mRNA decay controlled by the GM-CSF ARE and that the structure of the 3' NCR can strongly influence activation. The results are consistent with activation of ARE-mediated decay by possible entry of translation-linked decay factors into the 3' NCR or translation-coupled changes in 3' NCR ribonucleoprotein structure or composition
PMCID:230885
PMID: 7565786
ISSN: 0270-7306
CID: 7922

HCV REPLICATIVE INTERMEDIATES AS A PREDICTOR OF DISEASE-ACTIVITY AFTER LIVER-TRANSPLANTATION [Meeting Abstract]

BRODY, RI; MIZRACHI, HH; TEPERMAN, LW; SCHNEIDER, RJ
ISI:A1995QD54900764
ISSN: 0023-6837
CID: 87437

The hepatitis B virus X-gene product trans-activates both RNA polymerase II and III promoters

Aufiero, B; Schneider, R J
The transcriptional regulatory activity of the human hepatitis B virus (HBV) X-gene product was investigated. We demonstrate a new property for the HBV X-gene, the strong transcriptional trans-activation of promoters for class III genes. The stimulation of RNA polymerase III (pol III) as well as pol II promoters is shown in cells transiently transfected with the X-gene, and after its stable integration into hepatocytes. We demonstrate that X-gene containing cells stimulate the frequency of pol III transcription initiation by 20- to 40-fold, and accelerate the rate of formation of stable pol III initiation complexes in a manner indistinguishable from that of adenovirus E1a protein. Since the transcription factor TFIIIC has been shown to be limiting in the formation of stable pol III initiation complexes, template commitment experiments were performed which titrate the level of this factor in extracts. We show that X-protein containing extracts are far more efficient in forming stable pol III preinitiation complexes that cannot be competed away upon addition of a second template, indicating that TFIIIC is very probably a target of the X-protein. Thus, the HBV X-protein is apparently a member of a family of trans-activators capable of stimulating both pol II and III promoters, which includes the adenovirus E1a-protein and SV40 t antigen.
PMCID:551692
PMID: 2303039
ISSN: 0261-4189
CID: 582312

THE RELATIONSHIP OF HORMONAL AND IMMUNOLOGICAL RESPONSES TO STRESS IN TYPE A BEHAVIOR [Meeting Abstract]

BLASDELL K S; MILLS P; WALLACE R K; VANZANDT W L; SCHNEIDER R; WALTON K; HILL D
BIOSIS:PREV198834085055
ISSN: 0190-5295
CID: 92467