Searched for: in-biosketch:yes
person:costam01
Molecular mechanisms of metal toxicity and carcinogenicity
Chapter by: Davidson T; Ke Q; Costa M
in: Handbook on the toxicology of metals by Nordberg G [Eds]
Burlington MA : Academic Press, 2007
pp. 79-100
ISBN: 0123694132
CID: 4438
Nickel
Chapter by: Klein CB; Costa M
in: Handbook on the toxicology of metals by Nordberg G [Eds]
Burlington MA : Academic Press, 2007
pp. 743-758
ISBN: 0123694132
CID: 4437
Carcinogenicity of metal compounds
Chapter by: Ke Q; Costa M; Kazantzis G
in: Handbook on the toxicology of metals by Nordberg G [Eds]
Burlington MA : Academic Press, 2007
pp. 177-196
ISBN: 0123694132
CID: 4436
Chromium
Chapter by: Langard S; Costa M
in: Handbook on the toxicology of metals by Nordberg G [Eds]
Burlington MA : Academic Press, 2007
pp. 487-507
ISBN: 0123694132
CID: 4435
Nickel compounds render anti-apoptotic effect to human bronchial epithelial Beas-2B cells by induction of cyclooxygenase-2 through an IKKbeta/p65-dependent and IKKalpha- and p50-independent pathway
Ding, Jin; Zhang, Xinhai; Li, Jingxia; Song, Lun; Ouyang, Weiming; Zhang, Dongyun; Xue, Caifang; Costa, Max; Melendez, J Andres; Huang, Chuanshu
The carcinogenicity of nickel compounds has been well documented both in vitro and in vivo; however, the molecular mechanisms by which nickel compounds cause cancers are far from understood. Because suppression of apoptosis is thought to contribute to carcinogenesis, we investigated the mechanisms implicated in nickel-induced anti-apoptotic effect in human bronchial epithelial (Beas-2B) cells. We found that exposure of Beas-2B cells to nickel compounds resulted in increased cyclooxygenase-2 (COX-2) expression and that small interfering RNA (siCOX-2) knockdown of COX-2 expression resulted in increased cell sensitivity to nickel-triggered cell apoptosis, demonstrating that COX-2 induction has an anti-apoptotic effect on Beas-2B cells. Overexpression of IKKbeta-KM, a kinase inactive mutant of IKKbeta, blocked NF-kappaB activation and COX-2 induction by nickel compounds, indicating that activated NF-kappaB may be a mediator for COX-2 induction. To further explore the contribution of the NF-kappaB pathway in COX-2 induction and in protection from nickel exposure, mouse embryonic fibroblasts deficient in IKKbeta, IKKalpha, p65, and p50 were analyzed. Loss of IKKbeta impaired COX-2 induction by nickel exposure, whereas knockout of IKKalpha had a marginal effect. Moreover, the NF-kappaB p65, and not the p50 subunit, was critical for nickel-induced COX-2 expression. In addition, a deficiency of IKKbeta or p65 rendered cells more sensitive to nickel-induced apoptosis as compared with those in wild type cells. Finally, it was shown that reactive oxygen species H(2)O(2) were involved in both NF-kappaB activation and COX-2 expression. Collectively, our results demonstrate that COX-2 induction by nickel compounds occurs via an IKKbeta/p65 NF-kappaB-dependent but IKKalpha- and p50-independent pathway and plays a crucial role in antagonizing nickel-induced cell apoptosis in Beas-2B cells.
PMID: 16982623
ISSN: 0021-9258
CID: 156051
Effect of metal ions on HIF-1alpha and Fe homeostasis in human A549 cells
Kang, Gi Soo; Li, Qin; Chen, Haobin; Costa, Max
Several metals are carcinogenic but little is known about the mechanisms by which they cause cancer. A pathway that may contribute to metal ion induced carcinogenesis is by hypoxia signaling, which involves a disruption of cellular iron homeostasis by competition with iron transporters or iron-regulated enzymes. To examine the involvement of iron in the hypoxia signaling activity of these metal ions we investigated HIF-1alpha protein stabilization, IRP-1 activity, and ferritin protein levels in human lung carcinoma A459 cells exposed to various agents in serum- and iron-free salt-glucose medium (SGM) or in normal complete medium. We also studied the effects of excess exogenous iron on these responses induced by nickel ion exposure. Our results show the following: (1) SGM enhanced metals-induced HIF-1alpha stabilization and IRP-1 activation (e.g., nickel and cobalt ions). (2) If SGM was reconstituted with a slight excess level (25muM of FeSO(4)) of iron, this enhancing ability was significantly decreased. (3) The effect of a high level of exogenous iron (500muM of FeSO(4)) on metal-induced hypoxia and iron metabolism was highly dependent on the order of addition. If treatment with the Fe and metal ions was simultaneous (co-treatment), the effects of nickel ion exposure were overwhelmed, since the added Fe reversed HIF-1alpha stabilization, decreased IRP-1 activity, and increased ferritin level. Pre-treatment with iron was not able to reverse the responses caused by nickel ion exposure. These results imply that it is important to consider the available iron concentration and suitable exposure design when studying metal-induced hypoxia or metal-induced disruption of Fe homeostasis
PMID: 16877034
ISSN: 0027-5107
CID: 68895
Hypoxia-Inducible Factor-1 (HIF-1)
Ke, Qingdong; Costa, Max
Adaptation to low oxygen tension (hypoxia) in cells and tissues leads to the transcriptional induction of a series of genes that participate in angiogenesis, iron metabolism, glucose metabolism, and cell proliferation/survival. The primary factor mediating this response is the hypoxia-inducible factor-1 (HIF-1), an oxygen-sensitive transcriptional activator. HIF-1 consists of a constitutively expressed subunit HIF-1beta and an oxygen-regulated subunit HIF-1alpha (or its paralogs HIF-2alpha and HIF-3alpha). The stability and activity of the alpha subunit of HIF are regulated by its post-translational modifications such as hydroxylation, ubiquitination, acetylation, and phosphorylation. In normoxia, hydroxylation of two proline residues and acetylation of a lysine residue at the oxygen-dependent degradation domain (ODDD) of HIF-1alpha trigger its association with pVHL E3 ligase complex, leading to HIF-1alpha degradation via ubiquitin-proteasome pathway. In hypoxia, the HIF-1alpha subunit becomes stable and interacts with coactivators such as cAMP response element-binding protein binding protein/p300 and regulates the expression of target genes. Overexpression of HIF-1 has been found in various cancers, and targeting HIF-1 could represent a novel approach to cancer therapy
PMID: 16887934
ISSN: 0026-895x
CID: 68996
Response to comments by post and stern on article "Toxicity and carcinogenicity of chromium compounds in humans" [Letter]
Costa, M; Klein, C
ISI:000241196400005
ISSN: 1040-8444
CID: 68959
Effect of soluble nickel on cellular energy metabolism in A549 cells
Chen, Haobin; Costa, Max
Iron is an essential nutrient to most organisms, and is actively involved in oxygen delivery, electron transport, DNA synthesis, and many other biochemical reactions important for cell survival. We previously reported that nickel (Ni) ion exposure decreases cellular iron level and converts cytosolic aconitase (c-aconitase) to iron-regulatory protein-1 in A549 cells (Chen H, Davidson T, Singleton S, Garrick MD, Costa M. Toxicol Appl Pharmacol 206:275-287, 2005). Here, we further investigated the effect of Ni ion exposure on the activity of mitochondrial iron-sulfur (Fe-S) enzymes and cellular energy metabolism. We found that acute Ni ion treatment up to 1 mM exhibits minimal toxicity in A549 cells. Ni ion treatment decreases the activity of several Fe-S enzymes related to cellular energy metabolism, including mitochondrial aconitase (m-aconitase), succinate dehydrogenase (SDH), and NADH:ubiquinone oxidoreductase (complex I). Low doses of Ni ion for 4 weeks resulted in an increased cellular glycolysis and NADH to NAD+ (NADH/NAD+) ratio, although glycolysis was inhibited at higher levels. Collectively, our results show that Ni ions decrease the activity of cellular iron (Fe)-containing enzymes, inhibit oxidative phosphorylation (OxPhos), and increase cellular glycolytic activity. Since increased glycolysis is one of the fundamental alterations of energy metabolism in cancer cells (the Warburg effect), the inhibition of Fe-S enzymes and subsequent changes in cellular energy metabolism caused by Ni ions may play an important role in Ni carcinogenesis
PMID: 17018869
ISSN: 1535-3702
CID: 68893
Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells
Chen, Haobin; Yan, Yan; Davidson, Todd L; Shinkai, Yoichi; Costa, Max
Dimethylated histone H3 lysine 9 (H3K9me2) is a critical epigenetic mark for gene repression and silencing and plays an essential role in embryogenesis and carcinogenesis. Here, we investigated the effects of hypoxic stress on H3K9me2 at both global and gene-specific level. We found that hypoxia increased global H3K9me2 in several mammalian cell lines. This hypoxia-induced H3K9me2 was temporally correlated with an increase in histone methyltransferase G9a protein and enzyme activity. The increase in H3K9me2 was significantly mitigated in G9a-/- mouse embryonic stem cells following hypoxia challenge, indicating that G9a was involved in the hypoxia-induced H3K9me2. In addition to the activation of G9a, our results also indicated that hypoxia increased H3K9me2 by inhibiting H3K9 demethylation processes. Hypoxic mimetics, such as deferoxamine and dimethyloxalylglycine, were also found to increase H3K9me2 as well as G9a protein and activity. Finally, hypoxia increased H3K9me2 in the promoter regions of the Mlh1 and Dhfr genes, and these increases temporally correlated with the repression of these genes. Collectively, these results indicate that G9a plays an important role in the hypoxia-induced H3K9me2, which would inhibit the expression of several genes that would likely lead to solid tumor progression
PMID: 16982742
ISSN: 0008-5472
CID: 68894