Searched for: in-biosketch:yes
person:neubet01
Use of nitrocellulose membranes for protein characterization by matrix-assisted laser desorption/ionization mass spectrometry
Luque-Garcia, Jose L; Zhou, Ge; Sun, Tung-Tien; Neubert, Thomas A
We present an improved method for MALDI-MS analysis of proteins that have been electroblotted onto a nitrocellulose (NC) membrane. With this approach, electroblotted proteins can be analyzed directly for intact molecular weight determination or after on-membrane digestion by dissolution of the nitrocellulose in MALDI matrix solution containing 70% acetonitrile and 30% methanol. This solution helps maintain solubility of proteins and peptides while dissolving the NC membrane, which is dissolved by 100% acetone in other protocols. On-membrane tryptic digestion using this method requires half the time of in-gel digestion and results in fewer missed cleavages and better protein coverage. For the membrane proteins studied, bovine uroplakins II and III, the protein coverage was almost twice that provided by conventional in-gel digestion, and the transmembrane domains of both uroplakins were detected only after on-membrane digestion. We also demonstrated the compatibility with MALDI-MS of a new dye, MemCode, which is specifically designed for staining NC membrane-immobilized proteins and is faster and more sensitive than Ponceau-S. Our improved on-membrane digestion protocol greatly improves the study of soluble and, particularly strikingly, integral membrane proteins by mass spectrometry
PMCID:2538422
PMID: 16841935
ISSN: 0003-2700
CID: 71579
Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC)
Zhang, Guoan; Spellman, Daniel S; Skolnik, Edward Y; Neubert, Thomas A
Eph-related receptor tyrosine kinases (RTK) have been implicated in several biological functions including synaptic plasticity, axon guidance, and morphogenesis, yet the details of the signal transduction pathways that produce these specific biological functions after ligand-receptor interaction remain unclear. We used Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) in combination with LC-MS/MS to characterize cellular signaling following stimulation by ephrinB1-Fc of NG-108 cells that overexpress EphB2 receptors. Because tyrosine phosphorylation functions as a key regulatory event in RTK signaling, we used anti-phosphotyrosine immunoprecipitation (pY IP) of cell lysates to isolate potential participants in the EphB2 pathway. Our SILAC experiments identified 127 unique proteins, 40 of which demonstrated increased abundance in pY IPs from ephrinB1-Fc stimulated cells as compared with unstimulated cells. Six proteins demonstrated decreased abundance, and 81 did not change significantly in relative abundance. Western blotting analysis of five proteins after pY IP verified their SILAC results. On the basis of previously published work and use of PathwayAssist software, we proposed an interaction network downstream of EphB2 for the proteins with changed ratios
PMCID:2542903
PMID: 16512673
ISSN: 1535-3893
CID: 76652
Automated comparative proteomics based on multiplex tandem mass spectrometry and stable isotope labeling
Zhang, Guoan; Neubert, Thomas A
Comparative proteomic approaches using isotopic labeling and mass spectrometry (MS) have become increasingly popular. Conventionally, quantification is based on MS or extracted ion chromatogram (XIC) signals of differentially labeled peptides. However, in these MS-based experiments, the accuracy and dynamic range of quantification are limited by the high noise levels of MS/XIC data. Here we report a quantitative strategy based on multiplex (derived from multiple precursor ions) MS/MS data. One set of proteins was metabolically labeled with 13C6 lysine and 15N4 arginine, the other set unlabeled. For peptide analysis after tryptic digestion of the labeled proteins, a wide precursor window was used to include both the light and heavy versions of each peptide for fragmentation. The multiplex MS/MS data were used for both protein identification and quantification. The use of the wide precursor window increased sensitivity and the y ion pairs in the multiplex MS/MS spectra from peptides containing labeled and unlabeled lysine or arginine offered more information for, and thus the potential for improving, protein identification. Protein ratios were obtained by comparing intensities of y ions derived from the light and heavy peptides. Our results indicated that this method offers several advantages over the conventional XIC-based approach, including increased sensitivity for protein identification and more accurate quantification with more than a ten-fold increase in dynamic range. In addition, the quantification calculation process was fast, fully automated and independent of instrument and data type. This method was further validated by quantitative analysis of signaling proteins in the EphB2 pathway in NG-108 cells
PMID: 16253985
ISSN: 1535-9476
CID: 61371
Use of detergents to increase selectivity of immunoprecipitation of tyrosine phosphorylated peptides prior to identification by MALDI quadrupole-TOF MS
Zhang, Guoan; Neubert, Thomas A
Identification of tyrosine phosphorylation by MS is challenging due to its low abundance in biological samples. Therefore, specific enrichment of tyrosine phosphorylated peptides prior to their analysis is highly desirable. The application of immunopurification of phosphotyrosine (pY) peptides using pY antibodies has been greatly limited by poor selectivity. In the present study, we have shown that the selectivity of pY peptide immunopurification can be dramatically improved by adding detergents to immunoprecipitation buffers. Optimum selectivity and sensitivity were achieved using an immunoprecipitation buffer containing n-octyl glucoside with a concentration above its critical micelle concentration (0.7%). The optimized method was used to identify in vivo tyrosine phosphorylation on proteins isolated from cell extract by anti-pY protein immunoprecipitation. After immunopurification, non-pY-containing peptides from protein digests were readily removed and pY peptides became the dominant peaks in MALDI quadrupole-TOF mass spectra. In addition, the signal intensities from pY-containing peptides were enhanced significantly after enrichment, allowing characterization of tyrosine phosphorylation sites with greater sensitivity
PMID: 16342243
ISSN: 1615-9853
CID: 76653
New tricks for an old dog: proteomics of the PSD
Chapter by: Jordan, BA; Fernholz, BD; Neubert, TA; Ziff, EB
in: The dynamic synapse : molecular methods in ionotropic receptor biology by Kittler, Josef T; Moss, Stephen J [Eds]
Boca Raton, FL : CRC/Taylor & Francis, 2006
pp. ?-?
ISBN: 9780849318917
CID: 972102
Familial Danish dementia: co-existence of Danish and Alzheimer amyloid subunits (ADan AND A{beta}) in the absence of compact plaques
Tomidokoro, Yasushi; Lashley, Tammaryn; Rostagno, Agueda; Neubert, Thomas A; Bojsen-Moller, Marie; Braendgaard, Hans; Plant, Gordon; Holton, Janice; Frangione, Blas; Revesz, Tamas; Ghiso, Jorge
Familial Danish dementia is an early onset autosomal dominant neurodegenerative disorder linked to a genetic defect in the BRI2 gene and clinically characterized by dementia and ataxia. Cerebral amyloid and preamyloid deposits of two unrelated molecules (Danish amyloid (ADan) and beta-amyloid (Abeta)), the absence of compact plaques, and neurofibrillary degeneration indistinguishable from that observed in Alzheimer disease (AD) are the main neuropathological features of the disease. Biochemical analysis of extracted amyloid and preamyloid species indicates that as the solubility of the deposits decreases, the heterogeneity and complexity of the extracted peptides exponentially increase. Nonfibrillar deposits were mainly composed of intact ADan-(1-34) and its N-terminally modified (pyroglutamate) counterpart together with Abeta-(1-42) and Abeta-(4-42) in approximately 1:1 mixture. The post-translational modification, glutamate to pyroglutamate, was not present in soluble circulating ADan. In the amyloid fractions, ADan was heavily oligomerized and highly heterogeneous at the N and C terminus, and, when intact, its N terminus was post-translationally modified (pyroglutamate), whereas Abeta was mainly Abeta-(4-42). In all cases, the presence of Abeta-(X-40) was negligible, a surprising finding in view of the prevalence of Abeta40 in vascular deposits observed in sporadic and familial AD, Down syndrome, and normal aging. Whether the presence of the two amyloid subunits is imperative for the disease phenotype or just reflects a conformational mimicry remains to be elucidated; nonetheless, a specific interaction between ADan oligomers and Abeta molecules was demonstrated in vitro by ligand blot analysis using synthetic peptides. The absence of compact plaques in the presence of extensive neuro fibrillar degeneration strongly suggests that compact plaques, fundamental lesions for the diagnosis of AD, are not essential for the mechanism of dementia
PMID: 16091362
ISSN: 0021-9258
CID: 61252
Identification of phosphopeptides by MALDI Q-TOF mass spectrometry in positive and negative ion modes after methyl esterification
Xu, Chong-Feng; Lu, Yun; Ma, Jinghong; Mohammadi, Moosa; Neubert, Thomas A
We have developed an efficient, sensitive and specific method for the detection of phosphopeptides present in peptide mixtures by MALDI Q-TOF mass spectrometry. Use of the MALDI Q-TOF enables selection of phosphopeptides and characterization by collision-induced dissociation of the phosphopeptides performed on the same sample spot. However, this type of experiment has been limited by low ionization efficiency of phosphopeptides in positive ion mode while selecting precursor ions of phosphopeptides. Our method entails neutralizing negative charges on acidic groups of nonphosphorylated peptides by methyl esterification prior to mass spectrometry in positive and negative ion modes. Methyl esterification significantly increases the relative signal intensity generated by phosphopeptides in negative ion mode compared with positive ion mode, and greatly increases selectivity for phosphopeptides by suppressing the signal intensity generated by acidic peptides in negative ion mode. We used the method to identify 12 phosphopeptides containing 22 phosphorylation sites from low femtomolar amounts of a tryptic digest of ss-casein and a-s-casein. We also identified 10 phosphopeptides containing five phosphorylation sites from an in-gel tryptic digest of 100 fmol of an in vitro autophosphorylated fibroblast growth factor receptor kinase domain, and an additional phosphopeptide containing another phosphorylation site when 500 fmol of the digest was examined. The results demonstrate that the method is a fast, robust, and sensitive means of characterizing phosphopeptides present in low abundance mixtures of phosphorylated and nonphosphorylated peptides
PMID: 15753120
ISSN: 1535-9476
CID: 50627
Cleavage of p75 Neurotrophin Receptor by {alpha}-Secretase and {gamma}-Secretase Requires Specific Receptor Domains
Zampieri, Niccolo; Xu, Chong-Feng; Neubert, Thomas A; Chao, Moses V
The p75 neurotrophin receptor (p75(NTR)), a member of the tumor necrosis factor superfamily of receptors, undergoes multiple proteolytic cleavage events. These events are initiated by an alpha-secretase-mediated release of the extracellular domain followed by a gamma-secretase-mediated intramembrane cleavage. However, the specific determinants of p75(NTR) cleavage events are unknown. Many other substrates of gamma-secretase cleavage have been identified, including Notch, amyloid precursor protein, and ErbB4, indicating there is broad substrate recognition by gamma-secretase. Using a series of deletion mutations and chimeric receptors of p75(NTR) and the related Fas receptor, we have identified domains that are essential for p75(NTR) proteolysis. The initial alpha-secretase cleavage was extracellular to the transmembrane domain. Unfortunately, deletion mutants were not capable of defining the requirements of ectodomain shedding. Although this cleavage is promiscuous with respect to amino acid sequence, its position with respect to the transmembrane domain is invariant. The generation of chimeric receptors exchanging different domains of noncleavable Fas receptor with p75(NTR), however, revealed that a discrete domain above the membrane is sufficient for efficient cleavage of p75(NTR). Mass spectrometric analysis confirmed the cleavage can occur with a truncated p75(NTR) displaying only 15 extracellular amino acids in the stalk region
PMID: 15701642
ISSN: 0021-9258
CID: 50628
Identification and verification of novel rodent postsynaptic density proteins
Jordan, Bryen A; Fernholz, Brian D; Boussac, Muriel; Xu, Chongfeng; Grigorean, Gabriela; Ziff, Edward B; Neubert, Thomas A
The postsynaptic density (PSD) is a cellular structure specialized in receiving and transducing synaptic information. Here we describe the identification of 452 proteins isolated from biochemically purified PSD fractions of rat and mouse brains using nanoflow HPLC coupled to electrospray tandem mass spectrometry (LC-MS/MS). Fluorescence microscopy and Western blotting were used to verify that many of the novel proteins identified exhibit subcellular distributions consistent with those of PSD-localized proteins. In addition to identifying most previously described PSD components, we also detected proteins involved in signaling to the nucleus as well as regulators of ADP-ribosylation factor signaling, ubiquitination, RNA trafficking, and protein translation. These results suggest new mechanisms by which the PSD helps regulate synaptic strength and transmission
PMID: 15169875
ISSN: 1535-9476
CID: 48196
The N-terminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation: role in membrane targeting, cell adhesion, and spreading
Liang, Xiquan; Lu, Yun; Wilkes, Meredith; Neubert, Thomas A; Resh, Marilyn D
The N-terminal SH4 domain of Src family kinases is responsible for promoting membrane binding and plasma membrane targeting. Most Src family kinases contain an N-terminal Met-Gly-Cys consensus sequence that undergoes dual acylation with myristate and palmitate after removal of methionine. Previous studies of Src family kinase fatty acylation have relied on radiolabeling of cells with radioactive fatty acids. Although this method is useful for verifying that a given fatty acid is attached to a protein, it does not reveal whether other fatty acids or other modifying groups are attached to the protein. Here we use matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to identify fatty acylated species of the Src family kinase Fyn. Our results reveal that Fyn is efficiently myristoylated and that some of the myristoylated proteins are also heterogeneously S-acylated with palmitate, palmitoleate, stearate, or oleate. Furthermore, we show for the first time that Fyn is trimethylated at lysine residues 7 and/or 9 within its N-terminal region. Both myristoylation and palmitoylation were required for methylation of Fyn. However, a general methylation inhibitor had no inhibitory effect on myristoylation and palmitoylation of Fyn, suggesting that methylation occurs after myristoylation and palmitoylation. Lysine mutants of Fyn that could not be methylated failed to promote cell adhesion and spreading, suggesting that methylation is important for Fyn function
PMID: 14660555
ISSN: 0021-9258
CID: 42155