Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:nwb2

Total Results:

391


Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome

Barbara, Giovanni; Wang, Bingxian; Stanghellini, Vincenzo; de Giorgio, Roberto; Cremon, Cesare; Di Nardo, Giovanni; Trevisani, Marcello; Campi, Barbara; Geppetti, Pierangelo; Tonini, Marcello; Bunnett, Nigel W; Grundy, David; Corinaldesi, Roberto
BACKGROUND & AIMS/OBJECTIVE:Intestinal mast cell infiltration may participate to abdominal pain in irritable bowel syndrome (IBS) patients. However, the underlying mechanisms remain unknown. We assessed the effect of mast cell mediators released from the colonic mucosa of IBS patients on the activation of rat sensory neurons in vitro. METHODS:Colonic mast cell infiltration and mediator release were assessed with quantitative immunofluorescence and immunoenzymatic assays. The effect of mucosal mediators was tested on mesenteric sensory nerve firing and Ca(2+) mobilization in dorsal root ganglia in rats. RESULTS:Mediators from IBS patients, but not controls, markedly enhanced the firing of mesenteric nerves (14.7 +/- 3.2 imp/sec vs 2.8 +/- 1.5 imp/sec; P < .05) and stimulated mobilization of Ca(2+) in dorsal root ganglia neurons (29% +/- 4% vs 11% +/- 4%; P < .05). On average, 64% of dorsal root ganglia responsive to mediators were capsaicin-sensitive, known to mediate nociception. Histamine and tryptase were mainly localized to mucosal mast cells. IBS-dependent nerve firing and Ca(2+) mobilization were correlated with the area of the colonic lamina propria occupied by mast cells (r = 0.74; P < .01, and r = 0.78; P < .01, respectively). IBS-dependent excitation of dorsal root ganglia was inhibited by histamine H(1) receptor blockade and serine protease inactivation (inhibition of 51.7%; P < .05 and 74.5%; P < .05; respectively). CONCLUSIONS:Mucosal mast cell mediators from IBS patients excite rat nociceptive visceral sensory nerves. These results provide new insights into the mechanism underlying visceral hypersensitivity in IBS.
PMID: 17241857
ISSN: 0016-5085
CID: 4157152

Protease-Activated Receptors: Mechanisms by Which Proteases Sensitize TRPV Channels to Induce Neurogenic Inflammation and Pain

Chapter by: Grant, Andrew; Amadesi, Silvia; Bunnett, Nigel W.
in: TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades by Liedtke, WB; Heller, S (Eds)
[S.l.] : CRC Press/Taylor & Francis, 2007
pp. -
ISBN:
CID: 4159492

Impaired pain sensation in mice lacking prokineticin 2

Hu, Wang-Ping; Zhang, Chengkang; Li, Jia-Da; Luo, Z David; Amadesi, Silvia; Bunnett, Nigel; Zhou, Qun-Yong
Prokineticins (PKs), consisting of PK1 and PK2, are a pair of newly identified regulatory peptides. Two closely related G-protein coupled receptors, PKR1 and PKR2, mediate the signaling of PKs. PKs/PKRs participate in the regulation of diverse biological processes, ranging from development to adult physiology. A number of studies have indicated the involvement of PKs/PKRs in nociception. Here we show that PK2 is a sensitizer for nociception. Intraplantar injection of recombinant PK2 resulted in a strong and localized hyperalgesia with reduced thresholds to nociceptive stimuli. PK2 mobilizes calcium in dissociated dorsal root ganglion (DRG) neurons. Mice lacking the PK2 gene displayed strong reduction in nociception induced by thermal and chemical stimuli, including capsaicin. However, PK2 mutant mice showed no difference in inflammatory response to capsaicin. As the majority of PK2-responsive DRG neurons also expressed transient receptor potential vanilloid (TRPV1) and exhibited sensitivity to capsaicin, TRPV1 is likely a significant downstream molecule of PK2 signaling. Taken together, these results reveal that PK2 sensitize nociception without affecting inflammation.
PMCID:1660571
PMID: 17107623
ISSN: 1744-8069
CID: 4158882

Proteinase-activated receptors, targets for kallikrein signaling

Oikonomopoulou, Katerina; Hansen, Kristina K; Saifeddine, Mahmoud; Tea, Illa; Blaber, Michael; Blaber, Sachiko I; Scarisbrick, Isobel; Andrade-Gordon, Patricia; Cottrell, Graeme S; Bunnett, Nigel W; Diamandis, Eleftherios P; Hollenberg, Morley D
Serine proteinases like thrombin can signal to cells by the cleavage/activation of proteinase-activated receptors (PARs). Although thrombin is a recognized physiological activator of PAR(1) and PAR(4), the endogenous enzymes responsible for activating PAR(2) in settings other than the gastrointestinal system, where trypsin can activate PAR(2), are unknown. We tested the hypothesis that the human tissue kallikrein (hK) family of proteinases regulates PAR signaling by using the following: 1) a high pressure liquid chromatography (HPLC)-mass spectral analysis of the cleavage products yielded upon incubation of hK5, -6, and -14 with synthetic PAR N-terminal peptide sequences representing the cleavage/activation motifs of PAR(1), PAR(2), and PAR(4); 2) PAR-dependent calcium signaling responses in cells expressing PAR(1), PAR(2), and PAR(4) and in human platelets; 3) a vascular ring vasorelaxation assay; and 4) a PAR(4)-dependent rat and human platelet aggregation assay. We found that hK5, -6, and -14 all yielded PAR peptide cleavage sequences consistent with either receptor activation or inactivation/disarming. Furthermore, hK14 was able to activate PAR(1), PAR(2), and PAR(4) and to disarm/inhibit PAR(1). Although hK5 and -6 were also able to activate PAR(2), they failed to cause PAR(4)-dependent aggregation of rat and human platelets, although hK14 did. Furthermore, the relative potencies and maximum effects of hK14 and -6 to activate PAR(2)-mediated calcium signaling differed. Our data indicate that in physiological settings, hKs may represent important endogenous regulators of the PARs and that different hKs can have differential actions on PAR(1), PAR(2), and PAR(4).
PMID: 16885167
ISSN: 0021-9258
CID: 4157102

Tachykinins 2005 Meeting

Bunnett, N.
SCOPUS:33751002954
ISSN: 1537-1891
CID: 4159102

Neuronal control of skin function: the skin as a neuroimmunoendocrine organ

Roosterman, Dirk; Goerge, Tobias; Schneider, Stefan W; Bunnett, Nigel W; Steinhoff, Martin
This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.
PMID: 17015491
ISSN: 0031-9333
CID: 4157112

Ubiquitin-dependent down-regulation of the neurokinin-1 receptor

Cottrell, Graeme S; Padilla, Benjamin; Pikios, Stella; Roosterman, Dirk; Steinhoff, Martin; Gehringer, Daphne; Grady, Eileen F; Bunnett, Nigel W
Transient stimulation with substance P (SP) induces endocytosis and recycling of the neurokinin-1 receptor (NK(1)R). The effects of sustained stimulation by high concentrations of SP on NK(1)R trafficking and Ca(2+) signaling, as may occur during chronic inflammation and pain, are unknown. Chronic exposure to SP (100 nm, 3 h) completely desensitized Ca(2+) signaling by wild-type NK(1)R (NK(1)Rwt). Resensitization occurred after 16 h, and cycloheximide prevented resensitization, implicating new receptor synthesis. Lysine ubiquitination of G-protein-coupled receptors is a signal for their trafficking and degradation. Lysine-deficient mutant receptors (NK(1)RDelta5K/R, C-terminal tail lysines; and NK(1)RDelta10K/R, all intracellular lysines) were expressed at the plasma membrane and were functional because they responded to SP by endocytosis and by mobilization of Ca(2+) ions. SP desensitized NK(1)Rwt, NK(1)RDelta5K/R, and NK(1)RDelta10K/R. However, NK(1)RDelta5K/R and NK(1)RDelta10K/R resensitized 4-8-fold faster than NK(1)Rwt by cycloheximide-independent mechanisms. NK(1)RDelta325 (a naturally occurring truncated variant) showed incomplete desensitization, followed by a marked sensitization of signaling. Upon labeling receptors in living cells using antibodies to extracellular epitopes, we observed that SP induced endocytosis of NK(1)Rwt, NK(1)RDelta5K/R, and NK(1)RDelta10K/R. After 4 h in SP-free medium, NK(1)RDelta5K/R and NK(1)RDelta10K/R recycled to the plasma membrane, whereas NK(1)Rwt remained internalized. SP induced ubiquitination of NK(1)Rwt and NK(1)RDelta5K/R as determined by immunoprecipitation under nondenaturing and denaturing conditions and detected with antibodies for mono- and polyubiquitin. NK(1)RDelta10K/R was not ubiquitinated. Whereas SP induced degradation of NK(1)Rwt, NK(1)RDelta5K/R and NK(1)RDelta10K/R showed approximately 50% diminished degradation. Thus, chronic stimulation with SP induces ubiquitination of the NK(1)R, which mediates its degradation and down-regulation.
PMID: 16849335
ISSN: 0021-9258
CID: 4157082

Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice

Amadesi, Silvia; Cottrell, Graeme S; Divino, Lorna; Chapman, Kevin; Grady, Eileen F; Bautista, Francisco; Karanjia, Rustum; Barajas-Lopez, Carlos; Vanner, Stephen; Vergnolle, Nathalie; Bunnett, Nigel W
Proteases that are released during inflammation and injury cleave protease-activated receptor 2 (PAR2) on primary afferent neurons to cause neurogenic inflammation and hyperalgesia. PAR2-induced thermal hyperalgesia depends on sensitization of transient receptor potential vanilloid receptor 1 (TRPV1), which is gated by capsaicin, protons and noxious heat. However, the signalling mechanisms by which PAR2 sensitizes TRPV1 are not fully characterized. Using immunofluorescence and confocal microscopy, we observed that PAR2 was colocalized with protein kinase (PK) Cepsilon and PKA in a subset of dorsal root ganglia neurons in rats, and that PAR2 agonists promoted translocation of PKCepsilon and PKA catalytic subunits from the cytosol to the plasma membrane of cultured neurons and HEK 293 cells. Subcellular fractionation and Western blotting confirmed this redistribution of kinases, which is indicative of activation. Although PAR2 couples to phospholipase Cbeta, leading to stimulation of PKC, we also observed that PAR2 agonists increased cAMP generation in neurons and HEK 293 cells, which would activate PKA. PAR2 agonists enhanced capsaicin-stimulated increases in [Ca2+]i and whole-cell currents in HEK 293 cells, indicating TRPV1 sensitization. The combined intraplantar injection of non-algesic doses of PAR2 agonist and capsaicin decreased the latency of paw withdrawal to radiant heat in mice, indicative of thermal hyperalgesia. Antagonists of PKCepsilon and PKA prevented sensitization of TRPV1 Ca2+ signals and currents in HEK 293 cells, and suppressed thermal hyperalgesia in mice. Thus, PAR2 activates PKCepsilon and PKA in sensory neurons, and thereby sensitizes TRPV1 to cause thermal hyperalgesia. These mechanisms may underlie inflammatory pain, where multiple proteases are generated and released.
PMID: 16793902
ISSN: 0022-3751
CID: 4157072

Protease-activated receptor-2 activation exaggerates TRPV1-mediated cough in guinea pigs

Gatti, Raffaele; Andre, Eunice; Amadesi, Silvia; Dinh, Thai Q; Fischer, Axel; Bunnett, Nigel W; Harrison, Selena; Geppetti, Pierangelo; Trevisani, Marcello
A lowered threshold to the cough response frequently accompanies chronic airway inflammatory conditions. However, the mechanism(s) that from chronic inflammation results in a lowered cough threshold is poorly understood. Irritant agents, including capsaicin, resiniferatoxin, and citric acid, elicit cough in humans and in experimental animals through the activation of the transient receptor potential vanilloid 1 (TRPV1). Protease-activated receptor-2 (PAR2) activation plays a role in inflammation and sensitizes TRPV1 in cultured sensory neurons by a PKC-dependent pathway. Here, we have investigated whether PAR2 activation exaggerates TRPV1-dependent cough in guinea pigs and whether protein kinases are involved in the PAR2-induced cough modulation. Aerosolized PAR2 agonists (PAR2-activating peptide and trypsin) did not produce any cough per se. However, they potentiated citric acid- and resiniferatoxin-induced cough, an effect that was completely prevented by the TRPV1 receptor antagonist capsazepine. In contrast, cough induced by hypertonic saline, a stimulus that provokes cough in a TRPV1-independent manner, was not modified by aerosolized PAR2 agonists. The PKC inhibitor GF-109203X, the PKA inhibitor H-89, and the cyclooxygenase inhibitor indomethacin did not affect cough induced by TRPV1 agonists, but abated the exaggeration of this response produced by PAR2 agonists. In conclusion, PAR2 stimulation exaggerates TRPV1-dependent cough by activation of diverse mechanism(s), including PKC, PKA, and prostanoid release. PAR2 activation, by sensitizing TRPV1 in primary sensory neurons, may play a role in the exaggerated cough observed in certain airways inflammatory diseases such as asthma and chronic obstructive pulmonary disease.
PMID: 16627674
ISSN: 8750-7587
CID: 4157052

A role for proteinase-activated receptor-1 in inflammatory bowel diseases [Correction]

Vergnolle, Nathalie; Cellars, Laurie; Mencarelli, Andrea; Rizzo, Giovanni; Swaminathan, Sunita; Beck, Paul; Steinhoff, Martin; Andrade-Gordon, Patricia; Bunnett, Nigel W; Hollenberg, Morley D; Wallace, John L; Cirino, Giuseppe; Fiorucci, Stefano
PMID: 16881139
ISSN: 0021-9738
CID: 4157092