Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:aheari01

Total Results:

29


Phospholipase D1 regulates lymphocyte adhesion via upregulation of Rap1 at the plasma membrane

Mor, Adam; Wynne, Joseph P; Ahearn, Ian M; Dustin, Michael L; Du, Guangwei; Philips, Mark R
Rap1 is a small GTPase that modulates adhesion of T cells by regulating inside-out signaling through LFA-1. The bulk of Rap1 is expressed in a GDP-bound state on intracellular vesicles. Exocytosis of these vesicles delivers Rap1 to the plasma membrane, where it becomes activated. We report here that phospholipase D1 (PLD1) is expressed on the same vesicular compartment in T cells as Rap1 and is translocated to the plasma membrane along with Rap1. Moreover, PLD activity is required for both translocation and activation of Rap1. Increased T-cell adhesion in response to stimulation of the antigen receptor depended on PLD1. C3G, a Rap1 guanine nucleotide exchange factor located in the cytosol of resting cells, translocated to the plasma membranes of stimulated T cells. Our data support a model whereby PLD1 regulates Rap1 activity by controlling exocytosis of a stored, vesicular pool of Rap1 that can be activated by C3G upon delivery to the plasma membrane
PMCID:2698734
PMID: 19332557
ISSN: 1098-5549
CID: 99231

Topology of mammalian isoprenylcysteine carboxyl methyltransferase determined in live cells with a fluorescent probe

Wright, Latasha P; Court, Helen; Mor, Adam; Ahearn, Ian M; Casey, Patrick J; Philips, Mark R
Isoprenylcysteine carboxyl methyltransferase (Icmt) is a highly conserved enzyme that methyl esterifies the alpha carboxyl group of prenylated proteins including Ras and related GTPases. Methyl esterification neutralizes the negative charge of the prenylcysteine and thereby increases membrane affinity. Icmt is an integral membrane protein restricted to the endoplasmic reticulum (ER). The Saccharomyces cerevisiae ortholog, Ste14p, traverses the ER membrane six times. We used a novel fluorescent reporter to map the topology of human Icmt in living cells. Our results indicate that Icmt traverses the ER membrane eight times, with both N and C termini disposed toward the cytosol and with a helix-turn-helix structure comprising transmembrane (TM) segments 7 and 8. Several conserved amino acids that map to cytoplasmic portions of the enzyme are critical for full enzymatic activity. Mammalian Icmt has an N-terminal extension consisting of two TM segments not found in Ste14p and therefore likely to be regulatory. Icmt is a target for anticancer drug discovery, and these data may facilitate efforts to develop small-molecule inhibitors
PMCID:2655619
PMID: 19158273
ISSN: 1098-5549
CID: 97752

Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division

Michaelson, David; Abidi, Wasif; Guardavaccaro, Daniele; Zhou, Mo; Ahearn, Ian; Pagano, Michele; Philips, Mark R
Rac1 regulates a wide variety of cellular processes. The polybasic region of the Rac1 C terminus functions both as a plasma membrane-targeting motif and a nuclear localization sequence (NLS). We show that a triproline N-terminal to the polybasic region contributes to the NLS, which is cryptic in the sense that it is strongly inhibited by geranylgeranylation of the adjacent cysteine. Subcellular fractionation demonstrated endogenous Rac1 in the nucleus and Triton X-114 partition revealed that this pool is prenylated. Cell cycle-blocking agents, synchronization of cells stably expressing low levels of GFP-Rac1, and time-lapse microscopy of asynchronous cells revealed Rac1 accumulation in the nucleus in late G2 and exclusion in early G1. Although constitutively active Rac1 restricted to the cytoplasm inhibited cell division, activated Rac1 expressed constitutively in the nucleus increased the mitotic rate. These results show that Rac1 cycles in and out of the nucleus during the cell cycle and thereby plays a role in promoting cell division
PMCID:2364699
PMID: 18443222
ISSN: 1540-8140
CID: 79148

Analysis of K-Ras phosphorylation, translocation, and induction of apoptosis

Quatela, Steven E; Sung, Pamela J; Ahearn, Ian M; Bivona, Trever G; Philips, Mark R
K-Ras is a member of a family of proteins that associate with the plasma membrane by virtue of a lipid modification that inserts into the membrane and a polybasic region that associates with the anionic head groups of inner leaflet phospholipids. In the case of K-Ras, the lipid is a C-terminal farnesyl isoprenoid adjacent to a polylysine sequence. The affinity of K-Ras for the plasma membrane can be modulated by diminishing the net charge of the polybasic region. Among the ways this can be accomplished is phosphorylation by protein kinase C (PKC) of serine 181 within the polybasic region. Phosphorylation at this site regulates a farnesyl-electrostatic switch that controls association of K-Ras with the plasma membrane. Surprisingly, engagement of the farnesyl-electrostatic switch promotes apoptosis. This chapter describes methods for directly analyzing the phosphorylation status of K-Ras using metabolic labeling with (32)P, for indirectly assessing the farnesyl-electrostatic switch by following GFP-tagged K-Ras in live cells, for artificially activating the farnesyl-electrostatic switch by directing the kinase domain of a PKC to activated K-Ras using a Ras-binding domain, and for assessing apoptosis of individual cells using a YFP-tagged caspase 3 biosensor
PMID: 18374158
ISSN: 0076-6879
CID: 79382

PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis

Bivona, Trever G; Quatela, Steven E; Bodemann, Brian O; Ahearn, Ian M; Soskis, Michael J; Mor, Adam; Miura, John; Wiener, Heidi H; Wright, Latasha; Saba, Shahryar G; Yim, Duke; Fein, Adam; Perez de Castro, Ignacio; Li, Chi; Thompson, Craig B; Cox, Adrienne D; Philips, Mark R
K-Ras associates with the plasma membrane (PM) through farnesylation that functions in conjunction with an adjacent polybasic sequence. We show that phosphorylation by protein kinase C (PKC) of S181 within the polybasic region promotes rapid dissociation of K-Ras from the PM and association with intracellular membranes, including the outer membrane of mitochondria where phospho-K-Ras interacts with Bcl-XL. PKC agonists promote apoptosis of cells transformed with oncogenic K-Ras in a S181-dependent manner. K-Ras with a phosphomimetic residue at position 181 induces apoptosis via a pathway that requires Bcl-XL. The PKC agonist bryostatin-1 inhibited the growth in vitro and in vivo of cells transformed with oncogenic K-Ras in a S181-dependent fashion. These data demonstrate that the location and function of K-Ras are regulated directly by PKC and suggest an approach to therapy of K-Ras-dependent tumors with agents that stimulate phosphorylation of S181
PMID: 16483930
ISSN: 1097-2765
CID: 64117

Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion

Bivona, Trever G; Wiener, Heidi H; Ahearn, Ian M; Silletti, Joseph; Chiu, Vi K; Philips, Mark R
Rap1 and Ras are closely related GTPases that share some effectors but have distinct functions. We studied the subcellular localization of Rap1 and its sites of activation in living cells. Both GFP-tagged Rap1 and endogenous Rap1 were localized to the plasma membrane (PM) and endosomes. The PM association of GFP-Rap1 was dependent on GTP binding, and GFP-Rap1 was rapidly up-regulated on this compartment in response to mitogens, a process blocked by inhibitors of endosome recycling. A novel fluorescent probe for GTP-bound Rap1 revealed that this GTPase was transiently activated only on the PM of both fibroblasts and T cells. Activation on the PM was blocked by inhibitors of endosome recycling. Moreover, inhibition of endosome recycling blocked the ability of Rap1 to promote integrin-mediated adhesion of T cells. Thus, unlike Ras, the membrane localizations of Rap1 are dynamically regulated, and the PM is the principle platform from which Rap1 signaling emanates. These observations may explain some of the biological differences between these GTPases
PMCID:2172240
PMID: 14757755
ISSN: 0021-9525
CID: 46166

Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1

Bivona, Trever G; Perez De Castro, Ignacio; Ahearn, Ian M; Grana, Theresa M; Chiu, Vi K; Lockyer, Peter J; Cullen, Peter J; Pellicer, Angel; Cox, Adrienne D; Philips, Mark R
Ras proteins regulate cellular growth and differentiation, and are mutated in 30% of cancers. We have shown recently that Ras is activated on and transmits signals from the Golgi apparatus as well as the plasma membrane but the mechanism of compartmentalized signalling was not determined. Here we show that, in response to Src-dependent activation of phospholipase Cgamma1, the Ras guanine nucleotide exchange factor RasGRP1 translocated to the Golgi where it activated Ras. Whereas Ca(2+) positively regulated Ras on the Golgi apparatus through RasGRP1, the same second messenger negatively regulated Ras on the plasma membrane by means of the Ras GTPase-activating protein CAPRI. Ras activation after T-cell receptor stimulation in Jurkat cells, rich in RasGRP1, was limited to the Golgi apparatus through the action of CAPRI, demonstrating unambiguously a physiological role for Ras on Golgi. Activation of Ras on Golgi also induced differentiation of PC12 cells, transformed fibroblasts and mediated radioresistance. Thus, activation of Ras on Golgi has important biological consequences and proceeds through a pathway distinct from the one that activates Ras on the plasma membrane
PMID: 12845332
ISSN: 1476-4687
CID: 39161

Membrane trafficking of heterotrimeric G proteins via the endoplasmic reticulum and Golgi

Michaelson, David; Ahearn, Ian; Bergo, Martin; Young, Stephen; Philips, Mark
Membrane targeting of G-protein alphabetagamma heterotrimers was investigated in live cells by use of Galpha and Ggamma subunits tagged with spectral mutants of green fluorescent protein. Unlike Ras proteins, Gbetagamma contains a single targeting signal, the CAAX motif, which directed the dimer to the endoplasmic reticulum. Endomembrane localization of farnesylated Ggamma(1), but not geranylgeranylated Ggamma(2), required carboxyl methylation. Targeting of the heterotrimer to the plasma membrane (PM) required coexpression of all three subunits, combining the CAAX motif of Ggamma with the fatty acyl modifications of Galpha. Galpha associated with Gbetagamma on the Golgi and palmitoylation of Galpha was required for translocation of the heterotrimer to the PM. Thus, two separate signals, analogous to the dual-signal targeting mechanism of Ras proteins, cooperate to target heterotrimeric G proteins to the PM via the endomembrane
PMCID:124159
PMID: 12221133
ISSN: 1059-1524
CID: 47809

Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit

Ranganathan, V; Heine, W F; Ciccone, D N; Rudolph, K L; Wu, X; Chang, S; Hai, H; Ahearn, I M; Livingston, D M; Resnick, I; Rosen, F; Seemanova, E; Jarolim, P; DePinho, R A; Weaver, D T
Nijmegen breakage syndrome (NBS) is a rare human disease displaying chromosome instability, radiosensitivity, cancer predisposition, immunodeficiency, and other defects [1, 2]. NBS is complexed with MRE11 and RAD50 in a DNA repair complex [3-5] and is localized to telomere ends in association with TRF proteins [6, 7]. We show that blood cells from NBS patients have shortened telomere DNA ends. Likewise, cultured NBS fibroblasts that exhibit a premature growth cessation were observed with correspondingly shortened telomeres. Introduction of the catalytic subunit of telomerase, TERT, was alone sufficient to increase the proliferative capacity of NBS fibroblasts. However, NBS, but not TERT, restores the capacity of NBS cells to survive gamma irradiation damage. Strikingly, NBS promotes telomere elongation in conjunction with TERT in NBS fibroblasts. These results suggest that NBS is a required accessory protein for telomere extension. Since NBS patients have shortened telomeres, these defects may contribute to the chromosome instability and disease associated with NBS patients.
PMID: 11448772
ISSN: 0960-9822
CID: 3887172