Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:aifani01

Total Results:

250


Integrative CRISPR Activation and Small Molecule Inhibitor Screening for lncRNA Mediating BRAF Inhibitor Resistance in Melanoma

Shamloo, Sama; Kloetgen, Andreas; Petroulia, Stavroula; Hockemeyer, Kathryn; Sievers, Sonja; Tsirigos, Aristotelis; Aifantis, Ioannis; Imig, Jochen
The incidence of melanoma, being one of the most commonly occurring cancers, has been rising since the past decade. Patients at advanced stages of the disease have very poor prognoses, as opposed to at the earlier stages. The conventional targeted therapy is well defined and effective for advanced-stage melanomas for patients not responding to the standard-of-care immunotherapy. However, targeted therapies do not prove to be as effective as patients inevitably develop V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF)-inhibitor resistance to the respective drugs. Factors which are driving melanoma drug resistance mainly involve mutations in the mitogen-activated protein kinase (MAPK) pathway, e.g., BRAF splice variants, neuroblastoma RAS viral oncogene homolog (NRAS) amplification or parallel survival pathways. However, those mechanisms do not explain all cases of occurring resistances. Therefore, other factors accounting for BRAFi resistance must be better understood. Among them there are long non-coding RNAs (lncRNAs), but these remain functionally poorly understood. Here, we conduct a comprehensive, unbiased, and integrative study of lncRNA expression, coupled with a Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-mediated activation (CRISPRa) and small molecule inhibitor screening for BRAF inhibitor resistance to expand the knowledge of potentially druggable lncRNAs, their function, and pave the way for eventual combinatorial treatment approaches targeting diverse pathways in melanoma.
PMCID:10377043
PMID: 37509693
ISSN: 2227-9059
CID: 5727312

Mitophagy promotes resistance to BH3 mimetics in acute myeloid leukemia

Glytsou, Christina; Chen, Xufeng; Zacharioudakis, Emmanouil; Al-Santli, Wafa; Zhou, Hua; Nadorp, Bettina; Lee, Soobeom; Lasry, Audrey; Sun, Zhengxi; Papaioannou, Dimitrios; Cammer, Michael; Wang, Kun; Zal, Tomasz; Zal, Malgorzata Anna; Carter, Bing Z; Ishizawa, Jo; Tibes, Raoul; Tsirigos, Aristotelis; Andreeff, Michael; Gavathiotis, Evripidis; Aifantis, Iannis
BH3-mimetics are used as an efficient strategy to induce cell death in several blood malignancies, including acute myeloid leukemia (AML). Venetoclax, a potent BCL-2 antagonist, is used clinically in combination with hypomethylating agents for the treatment of AML. Moreover, MCL-1 or dual BCL-2/BCL-xL antagonists are under investigation. Yet, resistance to single or combinatorial BH3-mimetics therapies eventually ensues. Integration of multiple genome-wide CRISPR/Cas9 screens revealed that loss of mitophagy modulators sensitizes AML cells to various BH3-mimetics targeting different BCL-2 family members. One such regulator is MFN2, whose protein levels positively correlate with drug resistance in patients with AML. MFN2 overexpression is sufficient to drive resistance to BH3-mimetics in AML. Insensitivity to BH3-mimetics is accompanied by enhanced mitochondria-endoplasmic reticulum interactions and augmented mitophagy flux which acts as a pro-survival mechanism to eliminate mitochondrial damage. Genetic or pharmacologic MFN2 targeting synergizes with BH3-mimetics by impairing mitochondrial clearance and enhancing apoptosis in AML.
PMID: 37088914
ISSN: 2159-8290
CID: 5464912

The Role of Inflammation in the Initiation and Progression of Myeloid Neoplasms

Balandrán, Juan Carlos; Lasry, Audrey; Aifantis, Iannis
UNLABELLED:Myeloid malignancies are devastating hematologic cancers with limited therapeutic options. Inflammation is emerging as a novel driver of myeloid malignancy, with important implications for tumor composition, immune response, therapeutic options, and patient survival. Here, we discuss the role of inflammation in normal and malignant hematopoiesis, from clonal hematopoiesis to full-blown myeloid leukemia. We discuss how inflammation shapes clonal output from hematopoietic stem cells, how inflammation alters the immune microenvironment in the bone marrow, and novel therapies aimed at targeting inflammation in myeloid disease. SIGNIFICANCE:Inflammation is emerging as an important factor in myeloid malignancies. Understanding the role of inflammation in myeloid transformation, and the interplay between inflammation and other drivers of leukemogenesis, may yield novel avenues for therapy.
PMCID:10320626
PMID: 37052531
ISSN: 2643-3249
CID: 5536472

Stepwise activities of mSWI/SNF family chromatin remodeling complexes direct T cell activation and exhaustion

Battistello, Elena; Hixon, Kimberlee A; Comstock, Dawn E; Collings, Clayton K; Chen, Xufeng; Rodriguez Hernaez, Javier; Lee, Soobeom; Cervantes, Kasey S; Hinkley, Madeline M; Ntatsoulis, Konstantinos; Cesarano, Annamaria; Hockemeyer, Kathryn; Haining, W Nicholas; Witkowski, Matthew T; Qi, Jun; Tsirigos, Aristotelis; Perna, Fabiana; Aifantis, Iannis; Kadoch, Cigall
Highly coordinated changes in gene expression underlie T cell activation and exhaustion. However, the mechanisms by which such programs are regulated and how these may be targeted for therapeutic benefit remain poorly understood. Here, we comprehensively profile the genomic occupancy of mSWI/SNF chromatin remodeling complexes throughout acute and chronic T cell stimulation, finding that stepwise changes in localization over transcription factor binding sites direct site-specific chromatin accessibility and gene activation leading to distinct phenotypes. Notably, perturbation of mSWI/SNF complexes using genetic and clinically relevant chemical strategies enhances the persistence of T cells with attenuated exhaustion hallmarks and increased memory features in vitro and in vivo. Finally, pharmacologic mSWI/SNF inhibition improves CAR-T expansion and results in improved anti-tumor control in vivo. These findings reveal the central role of mSWI/SNF complexes in the coordination of T cell activation and exhaustion and nominate small-molecule-based strategies for the improvement of current immunotherapy protocols.
PMCID:10121856
PMID: 36944333
ISSN: 1097-4164
CID: 5462792

Oncogenic drivers dictate immune control of acute myeloid leukemia

Austin, Rebecca J; Straube, Jasmin; Halder, Rohit; Janardhanan, Yashaswini; Bruedigam, Claudia; Witkowski, Matthew; Cooper, Leanne; Porter, Amy; Braun, Matthias; Souza-Fonseca-Guimaraes, Fernando; Minnie, Simone A; Cooper, Emily; Jacquelin, Sebastien; Song, Axia; Bald, Tobias; Nakamura, Kyohei; Hill, Geoffrey R; Aifantis, Iannis; Lane, Steven W; Bywater, Megan J
Acute myeloid leukemia (AML) is a genetically heterogeneous, aggressive hematological malignancy induced by distinct oncogenic driver mutations. The effect of specific AML oncogenes on immune activation or suppression is unclear. Here, we examine immune responses in genetically distinct models of AML and demonstrate that specific AML oncogenes dictate immunogenicity, the quality of immune response and immune escape through immunoediting. Specifically, expression of NrasG12D alone is sufficient to drive a potent anti-leukemia response through increased MHC Class II expression that can be overcome with increased expression of Myc. These data have important implications for the design and implementation of personalized immunotherapies for patients with AML.
PMCID:10104832
PMID: 37059710
ISSN: 2041-1723
CID: 5464312

An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia

Lasry, Audrey; Nadorp, Bettina; Fornerod, Maarten; Nicolet, Deedra; Wu, Huiyun; Walker, Christopher J; Sun, Zhengxi; Witkowski, Matthew T; Tikhonova, Anastasia N; Guillamot-Ruano, Maria; Cayanan, Geraldine; Yeaton, Anna; Robbins, Gabriel; Obeng, Esther A; Tsirigos, Aristotelis; Stone, Richard M; Byrd, John C; Pounds, Stanley; Carroll, William L; Gruber, Tanja A; Eisfeld, Ann-Kathrin; Aifantis, Iannis
Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited treatment options. Here we provide a comprehensive census of the bone marrow immune microenvironment in adult and pediatric patients with AML. We characterize unique inflammation signatures in a subset of AML patients, associated with inferior outcomes. We identify atypical B cells, a dysfunctional B-cell subtype enriched in patients with high-inflammation AML, as well as an increase in CD8+GZMK+ and regulatory T cells, accompanied by a reduction in T-cell clonal expansion. We derive an inflammation-associated gene score (iScore) that associates with poor survival outcomes in patients with AML. Addition of the iScore refines current risk stratifications for patients with AML and may enable identification of patients in need of more aggressive treatment. This work provides a framework for classifying patients with AML based on their immune microenvironment and a rationale for consideration of the inflammatory state in clinical settings.
PMID: 36581735
ISSN: 2662-1347
CID: 5409732

Author Correction: An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia

Lasry, Audrey; Nadorp, Bettina; Fornerod, Maarten; Nicolet, Deedra; Wu, Huiyun; Walker, Christopher J; Sun, Zhengxi; Witkowski, Matthew T; Tikhonova, Anastasia N; Guillamot-Ruano, Maria; Cayanan, Geraldine; Yeaton, Anna; Robbins, Gabriel; Obeng, Esther A; Tsirigos, Aristotelis; Stone, Richard M; Byrd, John C; Pounds, Stanley; Carroll, William L; Gruber, Tanja A; Eisfeld, Ann-Kathrin; Aifantis, Iannis
PMID: 36658429
ISSN: 2662-1347
CID: 5417042

Computational model of CAR T-cell immunotherapy dissects and predicts leukemia patient responses at remission, resistance, and relapse

Liu, Lunan; Ma, Chao; Zhang, Zhuoyu; Witkowski, Matthew T; Aifantis, Iannis; Ghassemi, Saba; Chen, Weiqiang
BACKGROUND:Adaptive CD19-targeted chimeric antigen receptor (CAR) T-cell transfer has become a promising treatment for leukemia. Although patient responses vary across different clinical trials, reliable methods to dissect and predict patient responses to novel therapies are currently lacking. Recently, the depiction of patient responses has been achieved using in silico computational models, with prediction application being limited. METHODS:) relapse. Real-time CAR T-cell and tumor burden data of 209 patients were collected from clinical studies and standardized with unified units in bone marrow. Parameter estimation was conducted using the stochastic approximation expectation maximization algorithm for nonlinear mixed-effect modeling. RESULTS:relapse. Furthermore, we predicted patient responses by combining the peak and accumulated values of CAR T-cells or by inputting early-stage CAR T-cell dynamics. A clinical trial simulation using virtual patient cohorts generated based on real clinical patient datasets was conducted to further validate the prediction. CONCLUSIONS:Our model dissected the mechanism behind distinct responses of leukemia to CAR T-cell therapy. This patient-based computational immuno-oncology model can predict late responses and may be informative in clinical treatment and management.
PMCID:9730379
PMID: 36600553
ISSN: 2051-1426
CID: 5410022

The impact of inflammation-induced tumor plasticity during myeloid transformation

Yeaton, Anna; Cayanan, Geraldine; Loghavi, Sanam; Dolgalev, Igor; Leddin, Emmett M; Loo, Christian E; Torabifard, Hedieh; Nicolet, Deedra; Wang, Jingjing; Corrigan, Kate; Paraskevopoulou, Varvara; Starczynowski, Daniel T; Wang, Eric; Abdel-Wahab, Omar; Viny, Aaron D; Stone, Richard M; Byrd, John C; Guryanova, Olga A; Kohli, Rahul M; Cisneros, G Andres; Tsirigos, Aristotelis; Eisfeld, Ann-Kathrin; Aifantis, Iannis; Guillamot, Maria
Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of mutated pre-leukemic cells. Individuals with CH are at an increased risk of developing hematopoietic malignancies. Here, we describe a novel animal model carrying a recurrent TET2 missense mutation, frequently found in CH and leukemic patients. In a fashion similar to CH, animals show signs of disease late in life when they develop a wide range of myeloid neoplasms, including acute myeloid leukemia (AML). Using single cell transcriptomic profiling of the bone marrow, we show that disease progression in aged animals correlates with an enhanced inflammatory response and the emergence of an aberrant inflammatory monocytic cell population. The gene signature characteristic of this inflammatory population is associated to poor prognosis in AML patients. Our study illustrates an example of collaboration between a genetic lesion found in CH and inflammation, leading to transformation and the establishment of blood neoplasms.
PMID: 35924979
ISSN: 2159-8290
CID: 5288212

Publisher Correction: A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation

Kedmi, Ranit; Najar, Tariq A; Mesa, Kailin R; Grayson, Allyssa; Kroehling, Lina; Hao, Yuhan; Hao, Stephanie; Pokrovskii, Maria; Xu, Mo; Talbot, Jhimmy; Wang, Jiaxi; Germino, Joe; Lareau, Caleb A; Satpathy, Ansuman T; Anderson, Mark S; Laufer, Terri M; Aifantis, Iannis; Bartleson, Juliet M; Allen, Paul M; Paidassi, Helena; Gardner, James M; Stoeckius, Marlon; Littman, Dan R
PMID: 36151471
ISSN: 1476-4687
CID: 5335832