Searched for: in-biosketch:yes
person:balapb01
CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice
Subbanna, Shivakumar; Nagre, Nagaraja N; Shivakumar, Madhu; Joshi, Vikram; Psychoyos, Delphine; Kutlar, Abdullah; Umapathy, Nagavedi S; Basavarajappa, Balapal S
Alcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD). However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7) mice to ethanol activates caspase-3 via cannabinoid receptor type-1 (CB1R) in neonatal mice and causes a reduction in methylated DNA binding protein (MeCP2) levels. The developmental expression of MeCP2 in mice is closely correlated with synaptogenesis and neuronal maturation. It was shown that ethanol treatment of P7 mice enhanced Mecp2 mRNA levels but reduced protein levels. The genetic deletion of CB1R prevented, and administration of a CB1R antagonist before ethanol treatment of P7 mice inhibited caspase-3 activation. Additionally, it reversed the loss of MeCP2 protein, cAMP response element binding protein (CREB) activation, and activity-regulated cytoskeleton-associated protein (Arc) expression. The inhibition of caspase-3 activity prior to ethanol administration prevented ethanol-induced loss of MeCP2, CREB activation, epigenetic regulation of Arc expression, long-term potentiation (LTP), spatial memory deficits and activity-dependent impairment of several signaling molecules, including MeCP2, in adult mice. Collectively, these results reveal that the ethanol-induced CB1R-mediated activation of caspase-3 degrades the MeCP2 protein in the P7 mouse brain and causes long-lasting neurobehavioral deficits in adult mice. This CB1R-mediated instability of MeCP2 during active synaptic maturation may disrupt synaptic circuit maturation and lead to neurobehavioral abnormalities, as observed in this animal model of FASD.
PMCID:5826222
PMID: 29515368
ISSN: 1662-5099
CID: 4142352
Endocannabinoid system in neurodegenerative disorders
Basavarajappa, Balapal S; Shivakumar, Madhu; Joshi, Vikram; Subbanna, Shivakumar
Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs.
PMCID:5669051
PMID: 28608560
ISSN: 1471-4159
CID: 4142342
Cannabinoid receptors and their signaling mechanisms
Chapter by: Basavarajappa, Balapal S
in: The endocannabinoid system by Murillo-Rodriguez, Eric (Ed)
London, United Kingdom ; San Diego, CA : Academic Press, [2017]
pp. 25-62
ISBN: 0128096667
CID: 4142452
A single day of 5-azacytidine exposure during development induces neurodegeneration in neonatal mice and neurobehavioral deficits in adult mice
Subbanna, Shivakumar; Nagre, Nagaraja N; Shivakumar, Madhu; Basavarajappa, Balapal S
The present study was undertaken to evaluate the immediate and long-term effects of a single-day exposure to 5-Azacytidine (5-AzaC), a DNA methyltransferase inhibitor, on neurobehavioral abnormalities in mice. Our findings suggest that the 5-AzaC treatment significantly inhibited DNA methylation, impaired extracellular signal-regulated kinase (ERK1/2) activation and reduced expression of the activity-regulated cytoskeleton-associated protein (Arc). These events lead to the activation of caspase-3 (a marker for neurodegeneration) in several brain regions, including the hippocampus and cortex, two brain areas that are essential for memory formation and memory storage, respectively. 5-AzaC treatment of P7 mice induced significant deficits in spatial memory, social recognition, and object memory in adult mice and deficits in long-term potentiation (LTP) in adult hippocampal slices. Together, these data demonstrate that the inhibition of DNA methylation by 5-AzaC treatment in P7 mice causes neurodegeneration and impairs ERK1/2 activation and Arc protein expression in neonatal mice and induces behavioral abnormalities in adult mice. DNA methylation-mediated mechanisms appear to be necessary for the proper maturation of synaptic circuits during development, and disruption of this process by 5-AzaC could lead to abnormal cognitive function.
PMCID:5159185
PMID: 27594097
ISSN: 1873-507x
CID: 4142332
Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits
Basavarajappa, Balapal S; Subbanna, Shivakumar
Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS), which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD). Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA) biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD.
PMCID:4931489
PMID: 27070644
ISSN: 2076-3425
CID: 4142322
CB1 Receptor-Mediated Signaling Mechanisms in the Deleterious Effects of Spice Abuse
Chapter by: Basavarajappa, Balapal S.
in: Neuropathology of Drug Addictions and Substance Misuse by
[S.l. : s.n.], 2016
pp. 760-770
ISBN: 9780128002131
CID: 4142462
Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling
Basavarajappa, Balapal S
One of the unique features of prenatal alcohol exposure in humans is impaired cognitive and behavioral function resulting from damage to the central nervous system (CNS), which leads to a spectrum of impairments referred to as fetal alcohol spectrum disorder (FASD). Human FASD phenotypes can be reproduced in the rodent CNS following prenatal ethanol exposure. Several mechanisms are expected to contribute to the detrimental effects of prenatal alcohol exposure on the developing fetus, particularly in the developing CNS. These mechanisms may act simultaneously or consecutively and differ among a variety of cell types at specific developmental stages in particular brain regions. Studies have identified numerous potential mechanisms through which alcohol can act on the fetus. Among these mechanisms are increased oxidative stress, mitochondrial damage, interference with the activity of growth factors, glia cells, cell adhesion molecules, gene expression during CNS development and impaired function of signaling molecules involved in neuronal communication and circuit formation. These alcohol-induced deficits result in long-lasting abnormalities in neuronal plasticity and learning and memory and can explain many of the neurobehavioral abnormalities found in FASD. In this review, the author discusses the mechanisms that are associated with FASD and provides a current status on the endocannabinoid system in the development of FASD.
PMCID:4701023
PMID: 26529026
ISSN: 2076-3425
CID: 4142312
Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo
Yuan, A; Sershen, H; Veeranna; Basavarajappa, B S; Kumar, A; Hashim, A; Berg, M; Lee, J-H; Sato, Y; Rao, M V; Mohan, P S; Dyakin, V; Julien, J-P; Lee, V M-Y; Nixon, R A
Synaptic roles for neurofilament (NF) proteins have rarely been considered. Here, we establish all four NF subunits as integral resident proteins of synapses. Compared with the population in axons, NF subunits isolated from synapses have distinctive stoichiometry and phosphorylation state, and respond differently to perturbations in vivo. Completely eliminating NF proteins from brain by genetically deleting three subunits (alpha-internexin, NFH and NFL) markedly depresses hippocampal long-term potentiation induction without detectably altering synapse morphology. Deletion of NFM in mice, but not the deletion of any other NF subunit, amplifies dopamine D1-receptor-mediated motor responses to cocaine while redistributing postsynaptic D1-receptors from endosomes to plasma membrane, consistent with a specific modulatory role of NFM in D1-receptor recycling. These results identify a distinct pool of synaptic NF subunits and establish their key role in neurotransmission in vivo, suggesting potential novel influences of NF proteins in psychiatric as well as neurological states.
PMCID:4514553
PMID: 25869803
ISSN: 1476-5578
CID: 1684462
Functions of neurofilaments in synapses
Yuan, A; Sershen, H; Veeranna; Basavarajappa, B S; Kumar, A; Hashim, A; Berg, M; Lee, J-H; Sato, Y; Rao, M V; Mohan, P S; Dyakin, V; Julien, J-P; Lee, V M-Y; Nixon, R A
PMID: 26201270
ISSN: 1476-5578
CID: 1683992
Postnatal ethanol exposure alters levels of 2-arachidonylglycerol-metabolizing enzymes and pharmacological inhibition of monoacylglycerol lipase does not cause neurodegeneration in neonatal mice
Subbanna, Shivakumar; Psychoyos, Delphine; Xie, Shan; Basavarajappa, Balapal S
The consumption of ethanol by pregnant women may cause neurological abnormalities, affecting learning and memory processes in children, and are collectively described as fetal alcohol spectrum disorders. However, the molecular mechanisms underlying these changes are still poorly understood. In our previous studies, we found that ethanol treatment of postnatal day 7 (P7) mice significantly enhances the anandamide levels but not the 2-arachidonylglycerol (2-AG) levels and induces widespread neurodegeneration, but the reason for the lack of significant effects of ethanol on the 2-AG level is unknown. In this study, we examined developmental changes in diacylglycerol lipase-α, β (DAGL-α and β) and monoacylglycerol lipase (MAGL). We found that the levels of these proteins were significantly higher in adult brains compared to those detected early in brain development. Next, we examined the influence of P7 ethanol treatment on these enzymes, finding that it differentially altered the DAGL-α protein and mRNA levels but consistently enhanced those of the DAGL-β. Interestingly, the ethanol treatment enhanced MAGL protein and mRNA levels. Inhibition of MAGL with KML29 failed to induce neurodegeneration in P7 mice. Collectively, these findings suggest that ethanol significantly activates DAGL-β and MAGL in the neonatal brain, resulting in no net change in 2-AG levels.
PMCID:4490952
PMID: 25857698
ISSN: 1471-4159
CID: 4142302