Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:beckj02

Total Results:

25


Precerebellar hindbrain neurons encoding eye velocity during vestibular and optokinetic behavior in the goldfish

Beck, James C; Rothnie, Paul; Straka, Hans; Wearne, Susan L; Baker, Robert
Elucidating the causal role of head and eye movement signaling during cerebellar-dependent oculomotor behavior and plasticity is contingent on knowledge of precerebellar structure and function. To address this question, single-unit extracellular recordings were made from hindbrain Area II neurons that provide a major mossy fiber projection to the goldfish vestibulolateral cerebellum. During spontaneous behavior, Area II neurons exhibited minimal eye position and saccadic sensitivity. Sinusoidal visual and vestibular stimulation over a broad frequency range (0.1-4.0 Hz) demonstrated that firing rate mirrored the amplitude and phase of eye or head velocity, respectively. Table frequencies >1.0 Hz resulted in decreased firing rate relative to eye velocity gain, while phase was unchanged. During visual steps, neuronal discharge paralleled eye velocity latency (approximately 90 ms) and matched both the build-up and the time course of the decay (approximately 19 s) in eye velocity storage. Latency of neuronal discharge to table steps (40 ms) was significantly longer than for eye movement (17 ms), but firing rate rose faster than eye velocity to steady-state levels. The velocity sensitivity of Area II neurons was shown to equal (+/- 10%) the sum of eye- and head-velocity firing rates as has been observed in cerebellar Purkinje cells. These results demonstrate that Area II neuronal firing closely emulates oculomotor performance. Conjoint signaling of head and eye velocity together with the termination pattern of each Area II neuron in the vestibulolateral lobe presents a unique eye-velocity brain stem-cerebellar pathway, eliminating the conceptual requirement of motor error signaling
PMID: 16775207
ISSN: 0022-3077
CID: 68818

Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish

Beck, James C; Gilland, Edwin; Tank, David W; Baker, Robert
We quantitatively studied the ontogeny of oculomotor behavior in larval fish as a foundation for studies linking oculomotor structure and function with genetics. Horizontal optokinetic and vestibuloocular reflexes (OKR and VOR, respectively) were measured in three different species (goldfish, zebrafish, and medaka) during the first month after hatching. For all sizes of medaka, and most zebrafish, Bode plots of OKR (0.065-3.0 Hz, +/-10 degrees/s) revealed that eye velocity closely followed stimulus velocity (gain > 0.8) at low frequency but dropped sharply above 1 Hz (gain < 0.3 at 3 Hz). Goldfish showed increased gain proportional to size across frequencies. Linearity testing with steps and sinusoids showed excellent visual performance (gain > 0.8) in medaka almost from hatching; but zebrafish and goldfish exhibited progressive improvement, with only the largest equaling medaka performance. Monocular visual stimulation in zebrafish and goldfish produced gains of 0.5 versus <0.1 for the eye viewing a moving versus stationary stimulus pattern but 0.25 versus <0.1 in medaka. Angular VOR appeared much later than OKR, initially at only high accelerations (>200 degrees /s at 0.5 Hz), first in medaka followed by larger (8.11 mm) zebrafish; but it was virtually nonexistent in goldfish. Velocity storage was not observed except for an eye velocity build-up in the largest medaka. In summary, a robust OKR was achieved shortly after hatching in all three species. In contrast, larval fish seem to be unique among vertebrates tested in their lack of significant angular VOR at stages where active movement is required for feeding and survival
PMID: 15269231
ISSN: 0022-3077
CID: 47777

Instrumentation for measuring oculomotor performance and plasticity in larval organisms

Beck, James C; Gilland, Edwin; Baker, Robert; Tank, David W
PMID: 15602884
ISSN: 0091-679x
CID: 49301

Immunocytochemical localization of pedal peptide in the central nervous system of the gastropod mollusc Tritonia diomedea

Beck, J C; Cooper, M S; Willows, A O
Tritonia pedal ganglion peptides (TPeps) are a trio of pentadecapeptides isolated from the brain of the nudibranch Tritonia diomedea. TPeps have been shown both to increase the beating rate of ciliated cells of Tritonia and to accelerate heart contractions in the mollusc Clione limacina. Here we examine the immunocytochemical distribution of TPeps in the Tritonia central nervous system. We found the brain and buccal ganglia to be rich sources of TPep immunoreactivity. Specific cells in both structures, some of them previously identified, were immunoreactive. Moreover, immunoreactive fibers were seen connecting ganglia and exiting almost all the major nerves. In the brain, we found that the paired, ciliated statocysts apparently receive TPep innervation. In addition, we observed unstained cell bodies in each buccal ganglion with extensive TPep immunoreactive projections surrounding their somata and primary neurites. Similar projections were not observed in the brain. We also compared the TPep immunoreactivity with that of SCP(b) in the buccal ganglia. We observed many neurons and processes that were immunoreactive to both peptides. One neuron that contains both TPep- and SCP(b)-like peptides (B12) has an identified role in the Tritonia feeding network. Together, these findings suggest that TPeps may play an active role in the central nervous system of Tritonia as neurotransmitters modulating orientation, swimming, and feeding.
PMID: 10940937
ISSN: 0021-9967
CID: 3886362

Computer-assisted visualizations of neural networks: expanding the field of view using seamless confocal montaging

Beck, J C; Murray, J A; Willows, A O; Cooper, M S
Microscopic analysis of anatomic relationships within the neural networks of adult and developing tissues often requires sampling large spatial regions of neuronal architecture. To accomplish this, there are two common imaging approaches: (1) image the entire area at once with low spatial resolution; or (2) image small sections at higher magnification/resolution and then join the sections back together by mosaic reconstruction (photomontaging). Low magnification imaging is relatively rapid to perform, resulting in a visualization that encompasses a large field of view with an extended depth of field. However, for fluorescence microscopy, low magnification visualizations are often plagued by poor spatial resolution. High magnification imaging possesses superior spatial resolution, but it produces an image with limited depth of field. When creating a larger field of view, the final image is also fragmented at the boundaries where multiple images are stitched together. Using confocal microscopy as well as features of common image processing programs, we outline a new method to transform individual, spatially contiguous z-series into a montage with a seamless field of view and an extended depth of field. In addition, we show that the manual alignment of images our method requires does not introduce significant errors into the final image. We illustrate our method for visualizing neural networks using tissues from the adult gastropod mollusc, Tritonia diomedea, and the developing zebrafish, Danio rerio.
PMID: 10880829
ISSN: 0165-0270
CID: 3886232