Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:chenz04

Total Results:

128


Excitatory-inhibitory recurrent dynamics produce robust visual grids and stable attractors

Zhang, Xiaohan; Long, Xiaoyang; Zhang, Sheng-Jia; Chen, Zhe Sage
Spatially modulated grid cells have been recently found in the rat secondary visual cortex (V2) during active navigation. However, the computational mechanism and functional significance of V2 grid cells remain unknown. To address the knowledge gap, we train a biologically inspired excitatory-inhibitory recurrent neural network to perform a two-dimensional spatial navigation task with multisensory input. We find grid-like responses in both excitatory and inhibitory RNN units, which are robust with respect to spatial cues, dimensionality of visual input, and activation function. Population responses reveal a low-dimensional, torus-like manifold and attractor. We find a link between functional grid clusters with similar receptive fields and structured excitatory-to-excitatory connections. Additionally, multistable torus-like attractors emerged with increasing sparsity in inter- and intra-subnetwork connectivity. Finally, irregular grid patterns are found in recurrent neural network (RNN) units during a visual sequence recognition task. Together, our results suggest common computational mechanisms of V2 grid cells for spatial and non-spatial tasks.
PMID: 36516752
ISSN: 2211-1247
CID: 5382202

Modern views of machine learning for precision psychiatry

Chen, Zhe Sage; Kulkarni, Prathamesh Param; Galatzer-Levy, Isaac R; Bigio, Benedetta; Nasca, Carla; Zhang, Yu
In light of the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. We further review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We also discuss explainable AI (XAI) and neuromodulation in a closed human-in-the-loop manner and highlight the ML potential in multi-media information extraction and multi-modal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
PMCID:9676543
PMID: 36419447
ISSN: 2666-3899
CID: 5384302

Closed-loop stimulation using a multiregion brain-machine interface has analgesic effects in rodents

Sun, Guanghao; Zeng, Fei; McCartin, Michael; Zhang, Qiaosheng; Xu, Helen; Liu, Yaling; Chen, Zhe Sage; Wang, Jing
Effective treatments for chronic pain remain limited. Conceptually, a closed-loop neural interface combining sensory signal detection with therapeutic delivery could produce timely and effective pain relief. Such systems are challenging to develop because of difficulties in accurate pain detection and ultrafast analgesic delivery. Pain has sensory and affective components, encoded in large part by neural activities in the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC), respectively. Meanwhile, studies show that stimulation of the prefrontal cortex (PFC) produces descending pain control. Here, we designed and tested a brain-machine interface (BMI) combining an automated pain detection arm, based on simultaneously recorded local field potential (LFP) signals from the S1 and ACC, with a treatment arm, based on optogenetic activation or electrical deep brain stimulation (DBS) of the PFC in freely behaving rats. Our multiregion neural interface accurately detected and treated acute evoked pain and chronic pain. This neural interface is activated rapidly, and its efficacy remained stable over time. Given the clinical feasibility of LFP recordings and DBS, our findings suggest that BMI is a promising approach for pain treatment.
PMID: 35767651
ISSN: 1946-6242
CID: 5263662

Sharp Tuning of Head Direction and Angular Head Velocity Cells in the Somatosensory Cortex

Long, Xiaoyang; Deng, Bin; Young, Calvin K; Liu, Guo-Long; Zhong, Zeqi; Chen, Qian; Yang, Hui; Lv, Sheng-Qing; Chen, Zhe Sage; Zhang, Sheng-Jia
Head direction (HD) cells form a fundamental component in the brain's spatial navigation system and are intricately linked to spatial memory and cognition. Although HD cells have been shown to act as an internal neuronal compass in various cortical and subcortical regions, the neural substrate of HD cells is incompletely understood. It is reported that HD cells in the somatosensory cortex comprise regular-spiking (RS, putative excitatory) and fast-spiking (FS, putative inhibitory) neurons. Surprisingly, somatosensory FS HD cells fire in bursts and display much sharper head-directionality than RS HD cells. These FS HD cells are nonconjunctive, rarely theta rhythmic, sparsely connected and enriched in layer 5. Moreover, sharply tuned FS HD cells, in contrast with RS HD cells, maintain stable tuning in darkness; FS HD cells' coexistence with RS HD cells and angular head velocity (AHV) cells in a layer-specific fashion through the somatosensory cortex presents a previously unreported configuration of spatial representation in the neocortex. Together, these findings challenge the notion that FS interneurons are weakly tuned to sensory stimuli, and offer a local circuit organization relevant to the generation and transmission of HD signaling in the brain.
PMID: 35297541
ISSN: 2198-3844
CID: 5182432

Are Grid-Like Representations a Component of All Perception and Cognition?

Chen, Zhe Sage; Zhang, Xiaohan; Long, Xiaoyang; Zhang, Sheng-Jia
Grid cells or grid-like responses have been reported in the rodent, bat and human brains during various spatial and non-spatial tasks. However, the functions of grid-like representations beyond the classical hippocampal formation remain elusive. Based on accumulating evidence from recent rodent recordings and human fMRI data, we make speculative accounts regarding the mechanisms and functional significance of the sensory cortical grid cells and further make theory-driven predictions. We argue and reason the rationale why grid responses may be universal in the brain for a wide range of perceptual and cognitive tasks that involve locomotion and mental navigation. Computational modeling may provide an alternative and complementary means to investigate the grid code or grid-like map. We hope that the new discussion will lead to experimentally testable hypotheses and drive future experimental data collection.
PMCID:9329517
PMID: 35911570
ISSN: 1662-5110
CID: 5287642

Interictal EEG and ECG for SUDEP Risk Assessment: A Retrospective Multicenter Cohort Study

Chen, Zhe Sage; Hsieh, Aaron; Sun, Guanghao; Bergey, Gregory K; Berkovic, Samuel F; Perucca, Piero; D'Souza, Wendyl; Elder, Christopher J; Farooque, Pue; Johnson, Emily L; Barnard, Sarah; Nightscales, Russell; Kwan, Patrick; Moseley, Brian; O'Brien, Terence J; Sivathamboo, Shobi; Laze, Juliana; Friedman, Daniel; Devinsky, Orrin
Objective/UNASSIGNED:Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality. Although lots of effort has been made in identifying clinical risk factors for SUDEP in the literature, there are few validated methods to predict individual SUDEP risk. Prolonged postictal EEG suppression (PGES) is a potential SUDEP biomarker, but its occurrence is infrequent and requires epilepsy monitoring unit admission. We use machine learning methods to examine SUDEP risk using interictal EEG and ECG recordings from SUDEP cases and matched living epilepsy controls. Methods/UNASSIGNED:This multicenter, retrospective, cohort study examined interictal EEG and ECG recordings from 30 SUDEP cases and 58 age-matched living epilepsy patient controls. We trained machine learning models with interictal EEG and ECG features to predict the retrospective SUDEP risk for each patient. We assessed cross-validated classification accuracy and the area under the receiver operating characteristic (AUC) curve. Results/UNASSIGNED:The logistic regression (LR) classifier produced the overall best performance, outperforming the support vector machine (SVM), random forest (RF), and convolutional neural network (CNN). Among the 30 patients with SUDEP [14 females; mean age (SD), 31 (8.47) years] and 58 living epilepsy controls [26 females (43%); mean age (SD) 31 (8.5) years], the LR model achieved the median AUC of 0.77 [interquartile range (IQR), 0.73-0.80] in five-fold cross-validation using interictal alpha and low gamma power ratio of the EEG and heart rate variability (HRV) features extracted from the ECG. The LR model achieved the mean AUC of 0.79 in leave-one-center-out prediction. Conclusions/UNASSIGNED:Our results support that machine learning-driven models may quantify SUDEP risk for epilepsy patients, future refinements in our model may help predict individualized SUDEP risk and help clinicians correlate predictive scores with the clinical data. Low-cost and noninvasive interictal biomarkers of SUDEP risk may help clinicians to identify high-risk patients and initiate preventive strategies.
PMCID:8973318
PMID: 35370908
ISSN: 1664-2295
CID: 5191502

Uncovering spatial representations from spatiotemporal patterns of rodent hippocampal field potentials

Cao, Liang; Varga, Viktor; Chen, Zhe S
Spatiotemporal patterns of large-scale spiking and field potentials of the rodent hippocampus encode spatial representations during maze runs, immobility, and sleep. Here, we show that multisite hippocampal field potential amplitude at ultra-high-frequency band (FPAuhf), a generalized form of multiunit activity, provides not only a fast and reliable reconstruction of the rodent's position when awake, but also a readout of replay content during sharp-wave ripples. This FPAuhf feature may serve as a robust real-time decoding strategy from large-scale recordings in closed-loop experiments. Furthermore, we develop unsupervised learning approaches to extract low-dimensional spatiotemporal FPAuhf features during run and ripple periods and to infer latent dynamical structures from lower-rank FPAuhf features. We also develop an optical flow-based method to identify propagating spatiotemporal LFP patterns from multisite array recordings, which can be used as a decoding application. Finally, we develop a prospective decoding strategy to predict an animal's future decision in goal-directed navigation.
PMCID:8654278
PMID: 34888543
ISSN: 2667-2375
CID: 5110442

Disrupted population coding in the prefrontal cortex underlies pain aversion

Li, Anna; Liu, Yaling; Zhang, Qiaosheng; Friesner, Isabel; Jee, Hyun Jung; Chen, Zhe Sage; Wang, Jing
The prefrontal cortex (PFC) regulates a wide range of sensory experiences. Chronic pain is known to impair normal neural response, leading to enhanced aversion. However, it remains unknown how nociceptive responses in the cortex are processed at the population level and whether such processes are disrupted by chronic pain. Using in vivo endoscopic calcium imaging, we identify increased population activity in response to noxious stimuli and stable patterns of functional connectivity among neurons in the prelimbic (PL) PFC from freely behaving rats. Inflammatory pain disrupts functional connectivity of PFC neurons and reduces the overall nociceptive response. Interestingly, ketamine, a well-known neuromodulator, restores the functional connectivity among PL-PFC neurons in the inflammatory pain model to produce anti-aversive effects. These results suggest a dynamic resource allocation mechanism in the prefrontal representations of pain and indicate that population activity in the PFC critically regulates pain and serves as an important therapeutic target.
PMID: 34758316
ISSN: 2211-1247
CID: 5046122

Decoding pain from brain activity

Chen, Zhe Sage
Pain is a dynamic, complex and multidimensional experience. The identification of pain from brain activity as neural readout may effectively provide a neural code for pain, and further provide useful information for pain diagnosis and treatment. Advances in neuroimaging and large-scale electrophysiology have enabled us to examine neural activity with improved spatial and temporal resolution, providing opportunities to decode pain in humans and freely behaving animals. This topical review provides a systematical overview of state-of-the-art methods for decoding pain from brain signals, with special emphasis on electrophysiological and neuroimaging modalities. We show how pain decoding analyses can help pain diagnosis and discovery of neurobiomarkers for chronic pain. Finally, we discuss the challenges in the research field and point to several important future research directions.
PMID: 34608868
ISSN: 1741-2552
CID: 5039502

Stimulus-Driven and Spontaneous Dynamics in Excitatory-Inhibitory Recurrent Neural Networks for Sequence Representation

Rajakumar, Alfred; Rinzel, John; Chen, Zhe S
Recurrent neural networks (RNNs) have been widely used to model sequential neural dynamics ("neural sequences") of cortical circuits in cognitive and motor tasks. Efforts to incorporate biological constraints and Dale's principle will help elucidate the neural representations and mechanisms of underlying circuits. We trained an excitatory-inhibitory RNN to learn neural sequences in a supervised manner and studied the representations and dynamic attractors of the trained network. The trained RNN was robust to trigger the sequence in response to various input signals and interpolated a time-warped input for sequence representation. Interestingly, a learned sequence can repeat periodically when the RNN evolved beyond the duration of a single sequence. The eigenspectrum of the learned recurrent connectivity matrix with growing or damping modes, together with the RNN's nonlinearity, were adequate to generate a limit cycle attractor. We further examined the stability of dynamic attractors while training the RNN to learn two sequences. Together, our results provide a general framework for understanding neural sequence representation in the excitatory-inhibitory RNN.
PMID: 34530451
ISSN: 1530-888x
CID: 4999822