Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:cronsb01

Total Results:

378


SLE and purine metabolizing ecto-enzymes

Cronstein, Bruce N
PMID: 34773894
ISSN: 2352-3964
CID: 5050942

Ticagrelor added to methotrexate improves rheumatoid arthritis disease severity

Garshick, Michael S; Rosenthal, Pamela B; Luttrell-Williams, Elliot; Cronstein, Bruce N; Berger, Jeffrey S
PMID: 34142122
ISSN: 1462-0332
CID: 4950932

Browning of adipose tissue and increased thermogenesis induced by Methotrexate

Verma, Narendra; Perie, Luce; Corciulo, Carmen; Leucht, Philipp; Ramkhelawon, Bhama; Cronstein, Bruce N; Mueller, Elisabetta
Methotrexate (MTX) is widely used for the treatment of rheumatoid arthritis due to its well-known anti-inflammatory role in immune cells but its impact on brown and beige adipose tissue biology has not yet been investigated. Here, we present the novel evidence that MTX treatment increases the gene expression of thermogenic genes in brown and beige adipose tissues in a fat cell autonomous manner. Furthermore, we show that treatment of mice with MTX is associated with cold resistance, improved glucose homeostasis, decreased inflammation, and reduced hepatosteatosis in high-fat diet states. Overall, our data provide novel evidence of a role of MTX on thermogenic tissues not previously appreciated.
PMCID:8565234
PMID: 34761170
ISSN: 2573-9832
CID: 5050652

Adenosine A2A receptor null chondrocyte transcriptome resembles that of human osteoarthritic chondrocytes

Castro, Cristina M; Corciulo, Carmen; Friedman, Benjamin; Li, Zhi; Jacob, Samson; Fenyo, David; Cronstein, Bruce N
Adenosine signaling plays a critical role in the maintenance of articular cartilage and may serve as a novel therapeutic for osteoarthritis (OA), a highly prevalent and morbid disease without effective therapeutics in the current market. Mice lacking adenosine A2A receptors (A2AR) develop spontaneous OA by 16 weeks of age, a finding relevant to human OA since loss of adenosine signaling due to diminished adenosine production (NT5E deficiency) also leads to development of OA in mice and humans. To better understand the mechanism by which A2AR and adenosine generation protect from OA development, we examined differential gene expression in neonatal chondrocytes from WT and A2AR null mice. Analysis of differentially expressed genes was analyzed by KEGG pathway analysis, and oPOSSUM and the flatiron database were used to identify transcription factor binding enrichment, and tissue-specific network analyses and patterns were compared to gene expression patterns in chondrocytes from patients with OA. There was a differential expression of 2211 genes (padj<0.05). Pathway enrichment analysis revealed that pro-inflammatory changes, increased metalloprotease, reduced matrix organization, and homeostasis are upregulated in A2AR null chondrocytes. Moreover, stress responses, including autophagy and HIF-1 signaling, seem to be important drivers of OA and bear marked resemblance to the human OA transcriptome. Although A2AR null mice are born with grossly intact articular cartilage, we identify here the molecular foundations for early-onset OA in these mice, further establishing their role as models for human disease and the potential use of adenosine as a treatment for human disease.
PMID: 33973110
ISSN: 1573-9546
CID: 4867282

Adenosine A2A receptor signaling promotes FoxO associated autophagy in chondrocytes

Friedman, Benjamin; Corciulo, Carmen; Castro, Cristina M; Cronstein, Bruce N
Autophagy, a homeostatic pathway upregulated during cellular stress, is decreased in osteoarthritic chondrocytes and this reduction in autophagy is thought to contribute to the development and progression of osteoarthritis (OA). The adenosine A2A receptor (A2AR) is a potent anti-inflammatory receptor and deficiency of this receptor leads to the development of OA in mice. Moreover, treatment using liposomally conjugated adenosine or a specific A2AR agonist improved joint scores significantly in both rats with post-traumatic OA (PTOA) and mice subjected to a high fat diet obesity induced OA. Importantly, A2AR ligation is beneficial for mitochondrial health and metabolism in vitro in primary and the TC28a2 human cell line. An additional set of metabolic, stress-responsive, and homeostatic mediators include the Forkhead box O transcription factors (FoxOs). Data has shown that mouse FoxO knockouts develop early OA with reduced cartilage autophagy, indicating that FoxO-induced homeostasis is important for articular cartilage. Given the apparent similarities between A2AR and FoxO signaling, we tested the hypothesis that A2AR stimulation improves cartilage function through activation of the FoxO proteins leading to increased autophagy in chondrocytes. We analyzed the signaling pathway in the human TC28a2 cell line and corroborated these findings in vivo in a metabolically relevant obesity-induced OA mouse model. We found that A2AR stimulation increases activation and nuclear localization of FoxO1 and FoxO3, promotes an increase in autophagic flux, improves metabolic function in chondrocytes, and reduces markers of apoptosis in vitro and reduced apoptosis by TUNEL assay in vivo. A2AR ligation additionally enhances in vivo activation of FoxO1 and FoxO3 with evidence of enhanced autophagic flux upon injection of the liposome-associated A2AR agonist in a mouse obesity-induced OA model. These findings offer further evidence that A2AR may be an excellent target for promoting chondrocyte and cartilage homeostasis.
PMCID:7806643
PMID: 33441836
ISSN: 2045-2322
CID: 4747042

Annexin A2-Mediated Plasminogen Activation in Endothelial Cells Contributes to the Proangiogenic Effect of Adenosine A2A Receptors

Valls, María D; Soldado, María; Arasa, Jorge; Perez-Aso, Miguel; Williams, Adrienne J; Cronstein, Bruce N; Noguera, M Antonia; Terencio, M Carmen; Montesinos, M Carmen
Adenosine A2A receptor mediates the promotion of wound healing and revascularization of injured tissue, in healthy and animals with impaired wound healing, through a mechanism depending upon tissue plasminogen activator (tPA), a component of the fibrinolytic system. In order to evaluate the contribution of plasmin generation in the proangiogenic effect of adenosine A2A receptor activation, we determined the expression and secretion of t-PA, urokinase plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1) and annexin A2 by human dermal microvascular endothelial cells stimulated by the selective agonist CGS-21680. The plasmin generation was assayed through an enzymatic assay and the proangiogenic effect was studied using an endothelial tube formation assay in Matrigel. Adenosine A2A receptor activation in endothelial cells diminished the release of PAI-1 and promoted the production of annexin A2, which acts as a cell membrane co-receptor for plasminogen and its activator tPA. Annexin A2 mediated the increased cell membrane-associated plasmin generation in adenosine A2A receptor agonist treated human dermal microvascular endothelial cells and is required for tube formation in an in vitro model of angiogenesis. These results suggest a novel mechanism by which adenosine A2A receptor activation promotes angiogenesis: increased endothelial expression of annexin A2, which, in turn, promotes fibrinolysis by binding tPA and plasminogen to the cell surface.
PMCID:8111221
PMID: 33986681
ISSN: 1663-9812
CID: 4898042

Profiling Clinical Research Activity at an Academic Medical Center by Using Institutional Databases: Content Analysis

Langford, Aisha; Sherman, Scott; Thornton, Rachel; Nightingale, Kira; Kwon, Simona; Chavis-Keeling, Deborah; Link, Nathan; Cronstein, Bruce; Hochman, Judith; Trachtman, Howard
BACKGROUND:It is important to monitor the scope of clinical research of all types, to involve participants of all ages and subgroups in studies that are appropriate to their condition, and to ensure equal access and broad validity of the findings. OBJECTIVE:We conducted a review of clinical research performed at New York University with the following objectives: (1) to determine the utility of institutional administrative data to characterize clinical research activity; (2) to assess the inclusion of special populations; and (3) to determine if the type, initiation, and completion of the study differed by age. METHODS:Data for all studies that were institutional review board-approved between January 1, 2014, and November 2, 2016, were obtained from the research navigator system, which was launched in November 2013. One module provided details about the study protocol, and another module provided the characteristics of individual participants. Research studies were classified as observational or interventional. Descriptive statistics were used to assess the characteristics of clinical studies across the lifespan, by type, and over time. RESULTS:A total of 22%-24% of studies included children (minimum age <18 years) and 4%-5% focused exclusively on pediatrics. Similarly, 64%-72% of studies included older patients (maximum age >65 years) but only 5%-12% focused exclusively on geriatrics. Approximately 85% of the studies included both male and female participants. Of the remaining studies, those open only to girls or women were approximately 3 times as common as those confined to boys or men. A total of 56%-58% of projects focused on nonvulnerable patients. Among the special populations studied, children (12%-15%) were the most common. Noninterventional trial types included research on human data sets (24%), observational research (22%), survey research (16%), and biospecimen research (8%). The percentage of projects designed to test an intervention in a vulnerable population increased from 17% in 2014 to 21% in 2015. CONCLUSIONS:Pediatric participants were the special population that was most often studied based on the number of registered projects that included children and adolescents. However, they were much less likely to be successfully enrolled in research studies compared with adults older than 65 years. Only 20% of the studies were interventional, and 20%-35% of participants in this category were from vulnerable populations. More studies are exclusively devoted to women's health issues compared with men's health issues.
PMID: 32831180
ISSN: 2369-2960
CID: 4575082

Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis

Corciulo, Carmen; Castro, Cristina M; Coughlin, Thomas; Jacob, Samson; Li, Zhu; Fenyö, David; Rifkin, Daniel B; Kennedy, Oran D; Cronstein, Bruce Neil
Osteoarthritis (OA) affects nearly 10% of the population of the United States and other industrialized countries and, at present, short of surgical joint replacement, there is no therapy available that can reverse the progression of the disease. Adenosine, acting at its A2A receptor (A2AR), is a critical autocrine factor for maintenance of cartilage homeostasis and here we report that injection of liposomal suspensions of either adenosine or a selective A2AR agonist, CGS21680, significantly reduced OA cartilage damage in a murine model of obesity-induced OA. The same treatment also improved swelling and preserved cartilage in the affected knees in a rat model of established post-traumatic OA (PTOA). Differential expression analysis of mRNA from chondrocytes harvested from knees of rats with PTOA treated with liposomal A2AR agonist revealed downregulation of genes associated with matrix degradation and upregulation of genes associated with cell proliferation as compared to liposomes alone. Studies in vitro and in affected joints demonstrated that A2AR ligation increased the nuclear P-SMAD2/3/P-SMAD1/5/8 ratio, a change associated with repression of terminal chondrocyte differentiation. These results strongly suggest that targeting the A2AR is an effective approach to treat OA.
PMCID:7418027
PMID: 32778777
ISSN: 2045-2322
CID: 4556132

Adenosine A2A receptor (A2AR) stimulation enhances mitochondrial metabolism and mitigates reactive oxygen species-mediated mitochondrial injury

Castro, Cristina M; Corciulo, Carmen; Solesio, Maria E; Liang, Fengxia; Pavlov, Evgeny V; Cronstein, Bruce N
In OA chondrocytes, there is diminished mitochondrial production of ATP and diminished extracellular adenosine resulting in diminished adenosine A2A receptor (A2AR) stimulation and altered chondrocyte homeostasis which contributes to the pathogenesis of OA. We tested the hypothesis that A2AR stimulation maintains or enhances mitochondrial function in chondrocytes. The effect of A2AR signaling on mitochondrial health and function was determined in primary murine chondrocytes, a human chondrocytic cell line (T/C-28a2), primary human chondrocytes, and a murine model of OA by transmission electron microscopy analysis, mitochondrial stress testing, confocal live imaging for mitochondrial inner membrane polarity, and immunohistochemistry. In primary murine chondrocytes from A2AR-/- null mice, which develop spontaneous OA by 16 weeks, there is mitochondrial swelling, dysfunction, and reduced mitochondrial content with increased reactive oxygen species (ROS) burden and diminished mitophagy, as compared to chondrocytes from WT animals. IL-1-stimulated T/C-28a2 cells treated with an A2AR agonist had reduced ROS burden with increased mitochondrial dynamic stability and function, findings which were recapitulated in primary human chondrocytes. In an obesity-induced OA mouse model, there was a marked increase in mitochondrial oxidized material which was markedly improved after intraarticular injections of liposomal A2AR agonist. These results are consistent with the hypothesis that A2AR ligation is mitoprotective in OA.
PMID: 32052890
ISSN: 1530-6860
CID: 4304552

Gerald Weissmann: Inflammation in rheumatic disease

Cronstein, Bruce N; Buyon, Jill P; Abramson, Steven B
PMID: 31969327
ISSN: 1468-2060
CID: 4273172