Searched for: in-biosketch:yes
person:daiw01
Arsenic-induced sumoylation of Mus81 is involved in regulating genomic stability
Hu, Liyan; Yang, Feikun; Lu, Lou; Dai, Wei
Chronic environmental exposure to metal toxicants such as chromium and arsenic is closely related to the development of several types of common cancers. Genetic and epigenetic studies in the past decade reveal that post-translational modifications of histones play a role in metal carcinogenesis. However, exact molecular mechanisms of metal carcinogenesis remain to be elucidated. In this study we found that As2O3, an environmental metal toxicant, up-regulated overall modifications of many cellular proteins by SUMO2/3. Sumoylated proteins from arsenic-treated cells constitutively expressing His6-SUMO2 were pulled down by Ni-IDA resin under denaturing conditions. Mass spectrometric analysis revealed over 100 proteins that were potentially modified by sumoylation. Mus81, a DNA endonuclease involved in homologous recombination repair, was among the identified proteins whose sumoylation was increased after treatment with As2O3. We further showed that K10 and K524 were two lysine residues essential for Mus81 sumoylation. Moreover, we demonstrated that Mus81 sumoylation is important for normal mitotic chromosome congression and that cells expressing SUMO-resistant Mus81 mutants displayed compromised DNA damage responses after exposure to metal toxins such as Cr(VI) and arsenic.
PMCID:5405716
PMID: 28318385
ISSN: 1551-4005
CID: 2499312
Safety and Efficacy of Megakaryocytes Induced from Hematopoietic Stem Cells in Murine and Nonhuman Primate Models
Guan, Xin; Qin, Meng; Zhang, Yu; Wang, Yanan; Shen, Bin; Ren, Zhihua; Ding, Xinxin; Dai, Wei; Jiang, Yongping
Because of a lack of platelet supply and a U.S. Food and Drug Administration-approved platelet growth factor, megakaryocytes have emerged as an effective substitute for alleviating thrombocytopenia. Here, we report the development of an efficient two-stage culture system that is free of stroma, animal components, and genetic manipulations for the production of functional megakaryocytes from hematopoietic stem cells. Safety and functional studies were performed in murine and nonhuman primate models. One human cryopreserved cord blood CD34+ cell could be induced ex vivo to produce up to 1.0 x 104 megakaryocytes that included CD41a+ and CD42b+ cells at 82.4% +/- 6.1% and 73.3% +/- 8.5% (mean +/- SD), respectively, yielding approximately 650-fold higher cell numbers than reported previously. Induced human megakaryocytic cells were capable of engrafting and producing functional platelets in the murine xenotransplantation model. In the nonhuman primate model, transplantation of primate megakaryocytic progenitors increased platelet count nadir and enhanced hemostatic function with no adverse effects. In addition, primate platelets were released in vivo as early as 3 hours after transplantation with autologous or allogeneic mature megakaryocytes and lasted for more than 48 hours. These results strongly suggest that large-scale induction of functional megakaryocytic cells is applicable for treating thrombocytopenic blood diseases in the clinic. Stem Cells Translational Medicine 2017;6:897-909.
PMCID:5442772
PMID: 28297572
ISSN: 2157-6564
CID: 2488682
An effective ex-vivo approach for inducing endothelial progenitor cells from umbilical cord blood CD34+ cells
Qin, Meng; Guan, Xin; Wang, Huihui; Zhang, Yu; Shen, Bin; Zhang, Qingyu; Dai, Wei; Ma, Yupo; Jiang, Yongping
BACKGROUND: Transplantation of endothelial progenitor cells (EPCs)/endothelial cells (ECs) has been used for the treatment of ischemic diseases and hemophilia A, due to their great capacity for producing factor VIII and for repairing vascular damage. We established an effective approach to stimulate the expansion and differentiation of EPCs for potential therapeutic applications. METHODS: CD34+ cells isolated from human cord blood were cultured in a two-step system for 21 days. The generated adherent cells were characterized via flow cytometry and immunofluorescent staining. Moreover, single-cell clonogenic and tube-forming assays were carried out to evaluate their potential to proliferate and form vessel networks. Furthermore, these cells were transplanted into a mouse model of hepatic sinusoidal endothelium injury by hepatic portal vein injection to investigate their in-vivo behavior. RESULTS: The two-step culture protocol promoted the expansion and differentiation of human cord blood CD34+ cells efficiently, resulting in a large number of adherent cells within 3 weeks. The generated adherent cells were identified as EPCs/ECs based on the expression of CD31, CD144, vWF, and FVIII, and cell numbers showed a 1400-fold increase compared with the initial number. Moreover, these EPCs/ECs were capable of proliferating and establishing colonies as individual cells, and forming tube-like structures. More significantly, tissue examination of mice after transplantation revealed that the injected EPCs/ECs migrated and integrated into the liver, reconstituting the sinusoidal endothelial compartment. CONCLUSIONS: We developed an approach for the generation of cord blood-derived EPCs/ECs on a large scale, characterized them phenotypically, and demonstrated their in-vivo functional capacity. Our approach provides an excellent source of healthy EPCs/ECs for use in cell therapy in a clinical setting.
PMCID:5297174
PMID: 28173870
ISSN: 1757-6512
CID: 2436152
Polo-like kinase 3, hypoxic responses, and tumorigenesis
Xu, Dazhong; Dai, Wei; Li, Cen
The cellular hypoxic response contributes to cell transformation and tumor progression. Hypoxia-inducible factor 1 (HIF-1) is a key transcription factor that mediates transcription of genes whose products are essential for cellular adaptation to hypoxia. The activity of HIF-1 is largely regulated by the abundance of its alpha subunit (HIF-1alpha), which is primarily regulated by an oxygen-dependent and ubiquitin/proteasome-mediated degradation process. The HIF-1alpha protein level is also regulated by protein kinases through phosphorylation. Polo-like kinase 3 (Plk3) is a serine/threonine protein kinase with a tumor suppressive function. Plk3 phosphorylates and destabilizes HIF-1alpha. Plk3 also phosphorylates and stabilizes PTEN, a known regulator of HIF-1alpha stability via the PI3K pathway. Our latest study showed that the Plk3 protein is suppressed by hypoxia or nickel treatment via the ubiquitin/proteasome system. We discovered that Seven in Absentia Homologue 2 (SIAH2) is the E3 ubiquitin ligase of Plk3 and that Plk3 in turn destabilizes SIAH2. Given the role of SIAH2 in promoting stability of HIF-1alpha, our work reveals a novel mutual regulatory mechanism between Plk3 and SIAH2, which may function to fine-tune the cellular hypoxic response. Here we discuss the role of Plk3 in the hypoxic response and tumorigenesis in light of these latest findings.
PMCID:5731420
PMID: 28857653
ISSN: 1551-4005
CID: 2679712
Large-scale ex vivo generation of human neutrophils from cord blood CD34+ cells
Jie, Zhenwang; Zhang, Yu; Wang, Chen; Shen, Bin; Guan, Xin; Ren, Zhihua; Ding, Xinxin; Dai, Wei; Jiang, Yongping
Conventional high-dose chemotherapy frequently leads to severe neutropenia, during which patients experience a high risk of infection. Although support care with donor's neutrophils is possible this choice is largely hampered by the limited availability of matched donors. To overcome this problem, we explored a large-scale ex vivo production of neutrophils from hematopoietic stem cells (HSCs) using a four-stage culture approach in a roller-bottle production platform. We expanded CD34+ HSCs isolated from umbilical cord blood (UCB) using our in-house special medium supplemented with cytokine cocktails and achieved about 49000-fold expansion of cells, among which about 61% were differentiated mature neutrophils. Ex vivo differentiated neutrophils exhibited a chemotactic activity similar to those from healthy donors and were capable of killing E. coli in vitro. The expansion yield as reported herein was at least 5 times higher than any other methods reported in the literature. Moreover, the cost of our modified medium was only a small fraction (<1/60) of the StemSpan SFEM. Therefore, our ex vivo expansion platform, coupled with a low cost of stem cell culture due to the use of a modified medium, makes large-scale manufacturing neutrophils possible, which should be able to greatly ameliorate neutrophil shortage for transfusion in the clinic.
PMCID:5507460
PMID: 28700636
ISSN: 1932-6203
CID: 2630462
PTEN is a negative regulator of mitotic checkpoint complex during the cell cycle
Choi, Byeong H; Xie, Steve; Dai, Wei
Nuclear PTEN plays an important role during mitosis. To understand the molecular basis by which PTEN mediates mitotic progression, we examined whether PTEN regulated the formation of mitotic checkpoint complex (MCC). We observed that arsenic trioxide, a mitotic inducer, stimulated nuclear translocation of PTEN in a time-dependent manner. PTEN physically interacted with Cdc20 and Mad2, two important components of MCC. Arsenic treatment diminished the physical association of PTEN with BubR1 and Bub3 but not with Cdc20 and Mad2. Our further studies revealed that downregulation of PTEN via RNAi enhanced formation of MCC during the cell cycle. Moreover, PTEN silencing induced chromosomal instability. Given the crucial role of PTEN in suppressing tumor development, our study strongly suggests that PTEN also functions to maintain chromosomal stability, partly through suppressing unscheduled formation of MCC.
PMCID:5492438
PMID: 28670501
ISSN: 2162-3619
CID: 2616822
Ral A, via activating the mitotic checkpoint, sensitizes cells lacking a functional Nf1 to apoptosis in the absence of protein kinase C
Ganapathy, Suthakar; Fagman, Johan B; Shen, Ling; Yu, Tianqi; Zhou, Xiaodong; Dai, Wei; Makriyannis, Alexandros; Chen, Changyan
Nf1 mutations or deletions are suggested to underlie the tumor predisposition of NF1 (neurofibromatosis type 1) and few treatments are available for treating NF1 patients with advanced malignant tumors. Aberrant activation of Ras in Nf1-deficient conditions is responsible for the promotion of tumorigenesis in NF1. PKC is proven to be an important factor in supporting the viability of Nf1-defected cells, but the molecular mechanisms are not fully understood. In this study, we demonstrate that the inhibition of protein kinase C (PKC) by 1-O-Hexadecyl-2-O-methyl-rac-glycerol (HMG, a PKC inhibitor) preferentially sensitizes Nf1-defected cells to apoptosis, via triggering a persistent mitotic arrest. In this process, Ral A is activated. Subsequently, Chk1 is phosphorylated and translocated to the nucleus. Silencing Ral A significantly blocks Chk1 nuclear translocation and releases HMG-treated Nf1-deficient cells from mitotic arrest, resulting in the reduction of the magnitude of apoptosis. Thus, our study reveals that PKC is able to maintain the homeostasis or viability of Nf1-defected cells and may serve as a potential target for developing new therapeutic strategies.
PMCID:5356664
PMID: 27741517
ISSN: 1949-2553
CID: 2429962
Unmasking PTEN's nuclear functions
Dai, Wei
PMCID:5224454
PMID: 27764547
ISSN: 1551-4005
CID: 2280082
Ex-vivo expansion of nonhuman primate CD34+ cells by stem cell factor Sall4B
Shen, Bin; Zhang, Yu; Dai, Wei; Ma, Yupo; Jiang, Yongping
BACKGROUND: Hematopoietic CD34+ stem cells are widely used in the clinical therapy of complicated blood diseases. Stem cell factor Sall4B is a zinc finger transcription factor that plays a vital role in hematopoietic stem cell expansion. The purpose of our current study is to further evaluate how Sall4B might affect the expansion of CD34+ cells derived from nonhuman primates. METHODS: Sall4B was overexpressed in nonhuman primate bone marrow-derived CD34+ cells via a lentiviral transduction system. The granulocyte-erythrocyte-macrophage-megakaryocyte colony-forming unit (CFU) assay evaluated the differentiation potential of primate CD34+ cells that were expanded with Sall4B. Furthermore, an in-vivo murine system was employed to evaluate the hematopoietic potential of primate Sall4B-expanded CD34+ cells. RESULTS: Overexpression of Sall4B promoted ex-vivo nonhuman primate CD34+ cell expansion by 9.21 +/- 1.94-fold on day 9, whereas lentiviral transduction without Sall4B expanded cells by only 2.95 +/- 0.77-fold. Sall4B maintained a significant percentage of CD34+ cells as well. The CFU assay showed that the Sall4B-expanded CD34+ cells still possessed multilineage differentiation potential. A study using nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice in vivo revealed that Sall4B led to an increase in the number of repopulating cells and the 9-day-old Sall4B-transduced CD34+ cells still possess self-renewal and multilineage differentiation capacity in vivo, which are similar stemness characteristics to those in freshly isolated primate bone marrow-derived CD34+ cells. CONCLUSIONS: We investigated the expansion of nonhuman primate bone marrow-derived CD34+ cells using the Sall4B lentiviral overexpression approach; our findings provide a new perspective on mechanisms of rapid stem cell proliferation. The utilization of Sall4B to expand CD34+ cells on a large scale through use of suitable model systems would prove helpful towards preclinical trials of autologous transplantation.
PMCID:5072326
PMID: 27765075
ISSN: 1757-6512
CID: 2280092
Systemic chromosome instability in Shugoshin-1 mice resulted in compromised glutathione pathway, activation of Wnt signaling and defects in immune system in the lung
Yamada, H Y; Kumar, G; Zhang, Y; Rubin, E; Lightfoot, S; Dai, W; Rao, C V
Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1(-/+)) mice, a transgenic mouse model of CIN, showed mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1(-/-) Sgo1(-/+) double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1(-/+) or RAG1(-/-) mice, suggesting immune system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used systems biology approach, comparative RNAseq, to RAG1(-/-) and RAG1(-/-) Sgo1(-/+). The comparative RNAseq data and follow-up analyses in the lungs of naive Sgo1(-/+) mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo1(-/+) mice. Our model presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung.
PMCID:5007830
PMID: 27526110
ISSN: 2157-9024
CID: 2218832