Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:delmam01

Total Results:

173


Targeting the Microtubule EB1-CLASP2 Complex Modulates NaV1.5 at Intercalated Discs

Marchal, Gerard A; Jouni, Mariam; Chiang, David Y; Pérez-Hernández Duran, Marta; Podliesna, Svitlana; Yu, Nuo; Casini, Simona; Potet, Franck; Veerman, Christiaan C; Klerk, Mischa; Lodder, Elisabeth M; Mengarelli, Isabella; Guan, Kaomei; Vanoye, Carlos G; Rothenberg, Eli; Charpentier, Flavien; Redon, Richard; George, Alfred; Verkerk, Arie O; Bezzina, Connie R; MacRae, Calum A; Burridge, Paul; Delmar, Mario; Galjart, Niels J; Portero, Vincent; Remme, Carol Ann
Rationale: Loss-of-function of the cardiac sodium channel NaV1.5 causes conduction slowing and arrhythmias. NaV1.5 is differentially distributed within subcellular domains of cardiomyocytes, with sodium current (INa) being enriched at the intercalated discs (ID). Various pathophysiological conditions associated with lethal arrhythmias display ID-specific INa reduction, but the mechanisms underlying microdomain-specific targeting of NaV1.5 remain largely unknown. Objective: To investigate the role of the microtubule (MT) plus-end tracking proteins end binding protein 1 (EB1) and CLIP-associated protein 2 (CLASP2) in mediating NaV1.5 trafficking and subcellular distribution in cardiomyocytes.Methods and Results: EB1 overexpression in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) resulted in enhanced whole-cell INa, increased action potential (AP) upstroke velocity (Vmax), and enhanced NaV1.5 localization at the plasma membrane as detected by multi-color stochastic optical reconstruction microscopy (STORM). Fluorescence recovery after photobleaching (FRAP) experiments in HEK293A cells demonstrated that EB1 overexpression promoted NaV1.5 forward trafficking. Knockout of MAPRE1 in hiPSC-CMs led to reduced whole-cell INa, decreased Vmax and AP duration (APD) prolongation. Similarly, acute knockout of the MAPRE1 homolog in zebrafish (mapre1b) resulted in decreased ventricular conduction velocity and Vmax as well as increased APD. STORM imaging and macropatch INa measurements showed that subacute treatment (2-3 hours) with SB216763 (SB2), a GSK3β inhibitor known to modulate CLASP2-EB1 interaction, reduced GSK3β localization and increased NaV1.5 and INa preferentially at the ID region of wild type murine ventricular cardiomyocytes. By contrast, SB2 did not affect whole cell INa or NaV1.5 localization in cardiomyocytes from Clasp2-deficient mice, uncovering the crucial role of CLASP2 in SB2-mediated modulation of NaV1.5 at the ID. Conclusions: Our findings demonstrate the modulatory effect of the MT plus-end tracking protein EB1 on NaV1.5 trafficking and function, and identify the EB1-CLASP2 complex as a target for preferential modulation of INa within the ID region of cardiomyocytes.
PMID: 34092082
ISSN: 1524-4571
CID: 4899502

Coordination of endothelial cell positioning and fate specification by the epicardium

Quijada, Pearl; Trembley, Michael A; Misra, Adwiteeya; Myers, Jacquelyn A; Baker, Cameron D; Pérez-Hernández, Marta; Myers, Jason R; Dirkx, Ronald A; Cohen, Ethan David; Delmar, Mario; Ashton, John M; Small, Eric M
The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart.
PMID: 34230480
ISSN: 2041-1723
CID: 4933192

Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability

De Smet, Maarten Aj; Lissoni, Alessio; Nezlobinsky, Timur; Wang, Nan; Dries, Eef; Pérez-Hernández, Marta; Lin, Xianming; Amoni, Matthew; Vervliet, Tim; Witschas, Katja; Rothenberg, Eli; Bultynck, Geert; Schulz, Rainer; Panfilov, Alexander V; Delmar, Mario; Sipido, Karin R; Leybaert, Luc
Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known on potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels are activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mouse and pig. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability as compared to non-failing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a novel, targetable, mechanism of cardiac arrhythmogenesis in heart failure.
PMID: 33621213
ISSN: 1558-8238
CID: 4794482

Arrhythmias right ventricular cardiomyopathy and sports activity: from molecular pathways in diseased hearts to new insights into the athletic heart mimicry

Gasperetti, Alessio; James, Cynthia A; Cerrone, Marina; Delmar, Mario; Calkins, Hugh; Duru, Firat
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited disease associated with a high risk of sudden cardiac death. Among other factors, physical exercise has been clearly identified as a strong determinant of phenotypic expression of the disease, arrhythmia risk, and disease progression. Because of this, current guidelines advise that individuals with ARVC should not participate in competitive or frequent high-intensity endurance exercise. Exercise-induced electrical and morphological para-physiological remodelling (the so-called 'athlete's heart') may mimic several of the classic features of ARVC. Therefore, the current International Task Force Criteria for disease diagnosis may not perform as well in athletes. Clear adjudication between the two conditions is often a real challenge, with false positives, that may lead to unnecessary treatments, and false negatives, which may leave patients unprotected, both of which are equally inacceptable. This review aims to summarize the molecular interactions caused by physical activity in inducing cardiac structural alterations, and the impact of sports on arrhythmia occurrence and other clinical consequences in patients with ARVC, and help the physicians in setting the two conditions apart.
PMID: 33200174
ISSN: 1522-9645
CID: 4672512

Structural and Functional Characterization of A Nav1.5-Mitochondrial Couplon

Pérez-Hernández Duran, Marta; Leo-Macias, Alejandra; Keegan, Sarah; Jouni, Mariam; Kim, Joon-Chul; Agullo-Pascual, Esperanza; Vermij, Sarah H; Zhang, Mingliang; Liang, Feng-Xia; Burridge, Paul; Fenyo, David; Rothenberg, Eli; Delmar, Mario
Rationale: The cardiac sodium channel NaV1.5 has a fundamental role in excitability and conduction. Previous studies have shown that sodium channels cluster together in specific cellular subdomains. Their association with intracellular organelles in defined regions of the myocytes, and the functional consequences of that association, remain to be defined. Objective: To characterize a subcellular domain formed by sodium channel clusters in the crest region of the myocytes, and the subjacent subsarcolemmal mitochondria (SSM).Methods and Results: Through a combination of imaging approaches including super-resolution microscopy and electron microscopy we identified, in adult cardiac myocytes, a NaV1.5 subpopulation in close proximity to SSM; we further found that SSM preferentially host the mitochondrial Na+/Ca2+ exchanger (NCLX). This anatomical proximity led us to investigate functional changes in mitochondria resulting from sodium channel activity. Upon TTX exposure, mitochondria near NaV1.5 channels accumulated more Ca2+ and showed increased ROS production when compared to interfibrillar mitochondria. Finally, crosstalk between NaV1.5 channels and mitochondria was analyzed at a transcriptional level. We found that SCN5A and SLC8B1 (which encode NaV1.5 and NCLX, respectively) are negatively correlated both in a human transcriptome dataset (GTEx) and in human-induced pluripotent stem cell-derived cardiac myocytes deficient in SCN5A. Conclusions: We describe an anatomical hub (a couplon) formed by sodium channel clusters and SSM. Preferential localization of NCLX to this domain allows for functional coupling where the extrusion of Ca2+ from the mitochondria is powered, at least in part, by the entry of sodium through NaV1.5 channels. These results provide a novel entry-point into a mechanistic understanding of the intersection between electrical and structural functions of the heart.
PMID: 33342222
ISSN: 1524-4571
CID: 4726042

Heritable arrhythmia syndromes associated with abnormal cardiac sodium channel function: ionic and non-ionic mechanisms

Rivaud, Mathilde R; Delmar, Mario; Remme, Carol Ann
The cardiac sodium channel NaV1.5, encoded by the SCN5A gene, is responsible for the fast upstroke of the action potential. Mutations in SCN5A may cause sodium channel dysfunction by decreasing peak sodium current, which slows conduction and facilitates reentry-based arrhythmias, and by enhancing late sodium current, which prolongs the action potential and sets the stage for early afterdepolarization and arrhythmias. Yet, some NaV1.5-related disorders, in particular structural abnormalities, cannot be directly or solely explained on the basis of defective NaV1.5 expression or biophysics. An emerging concept that may explain the large disease spectrum associated with SCN5A mutations centers around the multifunctionality of the NaV1.5 complex. In this alternative view, alterations in NaV1.5 affect processes that are independent of its canonical ion-conducting role. We here propose a novel classification of NaV1.5 (dys)function, categorized into (1) direct ionic effects of sodium influx through NaV1.5 on membrane potential and consequent action potential generation, (2) indirect ionic effects of sodium influx on intracellular homeostasis and signalling, and (3) non-ionic effects of NaV1.5, independent of sodium influx, through interactions with macro-molecular complexes within the different micro-domains of the cardiomyocyte. These indirect ionic and non-ionic processes may, acting alone or in concert, contribute significantly to arrhythmogenesis. Hence, further exploration of these multifunctional effects of NaV1.5 is essential for the development of novel preventive and therapeutic strategies.
PMID: 32251506
ISSN: 1755-3245
CID: 4377072

Single-molecule Localization of Nav1.5 Reveals Different Modes of Reorganization at Cardiomyocyte Membrane Domains

Vermij, Sarah H; Rougier, Jean-Sébastien; Agulló-Pascual, Esperanza; Rothenberg, Eli; Delmar, Mario; Abriel, Hugues
Background - Mutations in the gene encoding the sodium channel Nav1.5 cause various cardiac arrhythmias. This variety may arise from different determinants of Nav1.5 expression between cardiomyocyte domains. At the lateral membrane and T-tubules, Nav1.5 localization and function remain insufficiently characterized. Methods - We used novel single-molecule localization microscopy (SMLM) and computational modeling to define nanoscale features of Nav1.5 localization and distribution at the lateral membrane (LM), the LM groove, and T-tubules (TT) in cardiomyocytes from wild-type (N = 3), dystrophin-deficient (mdx; N = 3) mice, and mice expressing C-terminally truncated Nav1.5 (ΔSIV; N = 3). We moreover assessed TT sodium current by recording whole-cell sodium currents in control (N = 5) and detubulated (N = 5) wild-type cardiomyocytes. Results - We show that Nav1.5 organizes as distinct clusters in the groove and T-tubules which density, distribution, and organization partially depend on SIV and dystrophin. We found that overall reduction in Nav1.5 expression in mdx and ΔSIV cells results in a non-uniform re-distribution with Nav1.5 being specifically reduced at the groove of ΔSIV and increased in T-tubules of mdx cardiomyocytes. A TT sodium current could however not be demonstrated. Conclusions - Nav1.5 mutations may site-specifically affect Nav1.5 localization and distribution at the lateral membrane and T-tubules, depending on site-specific interacting proteins. Future research efforts should elucidate the functional consequences of this redistribution.
PMID: 32536203
ISSN: 1941-3084
CID: 4484432

Quantitative Proteomics of Human Heart Samples Collected In Vivo Reveal the Remodeled Protein Landscape of Dilated Left Atrium Without Atrial Fibrillation

Linscheid, Nora; Poulsen, Pi Camilla; Pedersen, Ida Dalgaard; Gregers, Emilie; Svendsen, Jesper Hastrup; Olesen, Morten Salling; Olsen, Jesper Velgaard; Delmar, Mario; Lundby, Alicia
Genetic and genomic research has greatly advanced our understanding of heart disease. Yet, comprehensive, in-depth, quantitative maps of protein expression in hearts of living humans are still lacking. Using samples obtained during valve replacement surgery in patients with mitral valve prolapse (MVP), we set out to define inter-chamber differences, the intersect of proteomic data with genetic or genomic datasets, and the impact of left atrial dilation on the proteome of patients with no history of atrial fibrillation (AF). We collected biopsies from right atria (RA), left atria (LA) and left ventricle (LV) of seven male patients with mitral valve regurgitation with dilated LA but no history of AF. Biopsy samples were analyzed by high-resolution mass spectrometry (MS), where peptides were pre-fractionated by reverse phase high-pressure liquid chromatography prior to MS measurement on a Q-Exactive-HF Orbitrap instrument. We identified 7,314 proteins based on 130,728 peptides. Results were confirmed in an independent set of biopsies collected from three additional individuals. Comparative analysis against data from post-mortem samples showed enhanced quantitative power and confidence level in samples collected from living hearts. Our analysis, combined with data from genome wide association studies suggested candidate gene associations to MVP, identified higher abundance in ventricle for proteins associated with cardiomyopathies and revealed the dilated LA proteome, demonstrating differential representation of molecules previously associated with AF, in non-AF hearts. This is the largest dataset of cardiac protein expression from human samples collected in vivo. It provides a comprehensive resource that allows insight into molecular fingerprints of MVP and facilitates novel inferences between genomic data and disease mechanisms. We propose that over-representation of proteins in ventricle is consequent not to redundancy but to functional need, and conclude that changes in abundance of proteins known to associate with AF are not sufficient for arrhythmogenesis.
PMID: 33451404
ISSN: 1535-9484
CID: 4760002

Desmosome-Dyad Crosstalk: An Arrhythmogenic Axis in Arrhythmogenic Right Ventricular Cardiomyopathy [Editorial]

Delmar, Mario; Alvarado, Francisco J; Valdivia, Héctor H
PMID: 32364772
ISSN: 1524-4539
CID: 4429862

Ankyrin-G mediates targeting of both Na+ and KATP channels to the rat cardiac intercalated disc

Yang, Hua-Qian; Pérez-Hernández, Marta; Sanchez-Alonso, Jose; Shevchuk, Andriy; Gorelik, Julia; Rothenberg, Eli; Delmar, Mario; Coetzee, William A
We investigated targeting mechanisms of Na+ and KATP channels to the intercalated disk (ICD) of cardiomyocytes. Patch clamp and surface biotinylation data show reciprocal downregulation of each other's surface density. Mutagenesis of the Kir6.2 ankyrin binding site disrupts this functional coupling. Duplex patch clamping and Angle SICM recordings show that INa and IKATP functionally co-localize at the rat ICD, but not at the lateral membrane. Quantitative STORM imaging show that Na+ and KATP channels are localized close to each other and to AnkG, but not to AnkB, at the ICD. Peptides corresponding to Nav1.5 and Kir6.2 ankyrin binding sites dysregulate targeting of both Na+ and KATP channels to the ICD, but not to lateral membranes. Finally, a clinically relevant gene variant that disrupts KATP channel trafficking also regulates Na+ channel surface expression. The functional coupling between these two channels need to be considered when assessing clinical variants and therapeutics.
PMID: 31934859
ISSN: 2050-084x
CID: 4263232