Searched for: in-biosketch:yes
person:dengj06
Serial single-cell profiling analysis of metastatic TNBC during Nab-paclitaxel and pembrolizumab treatment
Deng, Jiehui; Thennavan, Aatish; Shah, Suhagi; Bagdatlioglu, Ece; Klar, Natalie; Heguy, Adriana; Marier, Christian; Meyn, Peter; Zhang, Yutong; Labbe, Kristen; Almonte, Christina; Krogsgaard, Michelle; Perou, Charles M; Wong, Kwok-Kin; Adams, Sylvia
PURPOSE/OBJECTIVE:Immunotherapy has recently been shown to improve outcomes for advanced PD-L1-positive triple-negative breast cancer (TNBC) in the Impassion130 trial, leading to FDA approval of the first immune checkpoint inhibitor in combination with taxane chemotherapy. To further develop predictive biomarkers and improve therapeutic efficacy of the combination, interrogation of the tumor immune microenvironment before therapy as well as during each component of treatment is crucial. Here we use single-cell RNA sequencing (scRNA-seq) on tumor biopsies to assess immune cell changes from two patients with advanced TNBC treated in a prospective trial at predefined serial time points, before treatment, on taxane chemotherapy and on chemo-immunotherapy. METHODS:Both patients (one responder and one progressor) received the trial therapy, in cycle 1 nab-paclitaxel given as single agent, in cycle 2 nab-paclitaxel in combination with pembrolizumab. Tumor core biopsies were obtained at baseline, 3 weeks (after cycle 1, chemotherapy alone) and 6 weeks (after cycle 2, chemo-immunotherapy). Single-cell RNA sequencing (scRNA-seq) of both cancer cells and infiltrating immune cells isolated were performed from fresh tumor core biopsy specimens by 10 × chromium sequencing. RESULTS:). In contrast, tumors from the patient with rapid disease progression showed a prevalent and persistent myeloid compartment. CONCLUSIONS:Our study provides a deep cellular analysis of on-treatment changes during chemo-immunotherapy for advanced TNBC, demonstrating not only feasibility of single-cell analyses on serial tumor biopsies but also the heterogeneity of TNBC and differences in on-treatment changes in responder versus progressor.
PMID: 32949350
ISSN: 1573-7217
CID: 4605282
Targeting HER2 Exon 20-Mutant Lung Adenocarcinoma with a Novel Tyrosine Kinase Inhibitor, Mobocertinib [Meeting Abstract]
Han, H.; Li, S.; Chen, T.; Fitzgerald, M.; Liu, S.; Peng, C.; Tang, K.; Cao, S.; Chouitar, J.; Wu, J.; Peng, D.; Deng, J.; Gao, Z.; Baker, T.; Li, F.; Zhang, H.; Pan, Y.; Ding, H.; Hu, H.; Pyon, V.; Thakurdin, C.; Papadopoulos, E.; Tang, S.; Gonzalvez, F.; Chen, H.; Rivera, V.; Brake, R.; Vincent, S.; Wong, K.
ISI:000709606500163
ISSN: 1556-0864
CID: 5184702
Epigenetic CRISPR screens identify Npm1 as a therapeutic vulnerability in non-small cell lung cancer
Li, Fei; Ng, Wai-Lung; Luster, Troy A; Hu, Hai; Sviderskiy, Vladislav O; Dowling, CatrÃona M; Hollinshead, Kate E R; Zouitine, Paula; Zhang, Hua; Huang, Qingyuan; Ranieri, Michela; Wang, Wei; Fang, Zhaoyuan; Chen, Ting; Deng, Jiehui; Zhao, Kai; So, Hon-Cheong; Khodadadi-Jamayran, Alireza; Xu, Mousheng; Karatza, Angeliki; Pyon, Val; Li, Shuai; Pan, Yuanwang; Labbe, Kristen; Almonte, Christina; Poirier, John T; Miller, George; Possemato, Richard; Qi, Jun; Wong, Kwok-Kin
Despite advancements in treatment options, the overall cure and survival rates for non-small cell lung cancers (NSCLC) remain low. While small-molecule inhibitors of epigenetic regulators have recently emerged as promising cancer therapeutics, their application in patients with NSCLC is limited. To exploit epigenetic regulators as novel therapeutic targets in NSCLC, we performed pooled epigenome-wide CRISPR knockout screens in vitro and in vivo and identified the histone chaperone nucleophosmin 1 (NPM1) as a potential therapeutic target. Genetic ablation of Npm1 significantly attenuated tumor progression in vitro and in vivo. Furthermore, KRAS-mutant cancer cells were more addicted to NPM1 expression. Genetic ablation of Npm1 rewired the balance of metabolism in cancer cells from predominant aerobic glycolysis to oxidative phosphorylation and reduced the population of tumor-propagating cells. Overall, our results support NPM1 as a therapeutic vulnerability in NSCLC.
PMID: 32646968
ISSN: 1538-7445
CID: 4518022
Generation of genetically engineered mouse lung organoid models for squamous cell lung cancers allows for the study of combinatorial immunotherapy
Hai, Josephine; Zhang, Hua; Zhou, Jin; Wu, Zhong; Chen, Ting; Papadopoulos, Eleni; Dowling, CatrÃona M; Pyon, Val; Pan, Yuanwang; Liu, Jie B; Bronson, Roderick T; Silver, Heather; Lizotte, Patrick H; Deng, Jiehui; Campbell, Joshua D; Sholl, Lynette M; Ng, Christine; Tsao, Ming-Sound; Thakurdin, Cassandra; Bass, Adam J; Wong, Kwok-Kin
PURPOSE/OBJECTIVE:Lung squamous cell carcinoma (LSCC) is a deadly disease for which only a subset of patients responds to immune checkpoint blockade (ICB) therapy. Therefore, preclinical mouse models that recapitulate the complex genetic profile found in patients are urgently needed. EXPERIMENTAL DESIGN/METHODS:We used CRISPR genome editing to delete multiple tumor suppressors in lung organoids derived from Cre-dependent SOX2 knock-in mice. We investigated both the therapeutic efficacy and immunological effects accompanying combination PD-1 blockade and WEE1 inhibition in both mouse models and LSCC patient-derived cell lines. RESULTS:We show that multiplex gene editing of mouse lung organoids using the CRISPR-Cas9 system allows for efficient and rapid means to generate LSCCs that closely mimic the human disease at the genomic and phenotypic level. Using this genetically-defined mouse model and three-dimensional tumoroid culture system, we show that WEE1 inhibition induces DNA damage that primes the endogenous type I interferon and antigen presentation system in primary LSCC tumor cells. These events promote cytotoxic T cell-mediated clearance of tumor cells and reduce the accumulation of tumor-infiltrating neutrophils. Beneficial immunological features of WEE1 inhibition are further enhanced by the addition of anti-PD-1 therapy. CONCLUSIONS:We developed a mouse model system to investigate a novel combinatory approach that illuminates a clinical path hypothesis for combining ICB with DNA damage-inducing therapies in the treatment of LSCC.
PMID: 32209571
ISSN: 1078-0432
CID: 4358482
In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma
Li, Fei; Huang, Qingyuan; Luster, Troy A; Hu, Hai; Zhang, Hua; Ng, Wai-Lung; Khodadadi-Jamayran, Alireza; Wang, Wei; Chen, Ting; Deng, Jiehui; Ranieri, Michela; Fang, Zhaoyuan; Pyon, Val; Dowling, Catriona M; Bagdatlioglu, Ece; Almonte, Christina; Labbe, Kristen; Silver, Heather; Rabin, Alexandra R; Jani, Kandarp; Tsirigos, Aristotelis; Papagiannakopoulos, Thales; Hammerman, Peter S; Velcheti, Vamsidhar; Freeman, Gordon J; Qi, Jun; Miller, George; Wong, Kwok-Kin
Despite substantial progress in lung cancer immunotherapy, the overall response rate in KRAS-mutant lung adenocarcinoma (ADC) patients remains low. Combining standard immunotherapy with adjuvant approaches that enhance adaptive immune responses-such as epigenetic modulation of anti-tumor immunity-is therefore an attractive strategy. To identify epigenetic regulators of tumor immunity, we constructed an epigenetic-focused sgRNA library, and performed an in vivo CRISPR screen in a KrasG12D/P53-/- (KP) lung ADC model. Our data showed that loss of the histone chaperone Asf1a in tumor cells sensitizes tumors to anti-PD-1 treatment. Mechanistic studies revealed that tumor cell-intrinsic Asf1a deficiency induced immunogenic macrophage differentiation in the tumor microenvironment by upregulating GM-CSF expression and potentiated T cell activation in combination with anti-PD-1. Our results provide rationale for a novel combination therapy consisting of ASF1A inhibition and anti-PD-1 immunotherapy.
PMID: 31744829
ISSN: 2159-8290
CID: 4208912
CDK7 Inhibition Potentiates Genome Instability Triggering Anti-tumor Immunity in Small Cell Lung Cancer
Zhang, Hua; Christensen, Camilla L; Dries, Ruben; Oser, Matthew G; Deng, Jiehui; Diskin, Brian; Li, Fei; Pan, Yuanwang; Zhang, Xuzhu; Yin, Yandong; Papadopoulos, Eleni; Pyon, Val; Thakurdin, Cassandra; Kwiatkowski, Nicholas; Jani, Kandarp; Rabin, Alexandra R; Castro, Dayanne M; Chen, Ting; Silver, Heather; Huang, Qingyuan; Bulatovic, Mirna; Dowling, CatrÃona M; Sundberg, Belen; Leggett, Alan; Ranieri, Michela; Han, Han; Li, Shuai; Yang, Annan; Labbe, Kristen E; Almonte, Christina; Sviderskiy, Vladislav O; Quinn, Max; Donaghue, Jack; Wang, Eric S; Zhang, Tinghu; He, Zhixiang; Velcheti, Vamsidhar; Hammerman, Peter S; Freeman, Gordon J; Bonneau, Richard; Kaelin, William G; Sutherland, Kate D; Kersbergen, Ariena; Aguirre, Andrew J; Yuan, Guo-Cheng; Rothenberg, Eli; Miller, George; Gray, Nathanael S; Wong, Kwok-Kin
Cyclin-dependent kinase 7 (CDK7) is a central regulator of the cell cycle and gene transcription. However, little is known about its impact on genomic instability and cancer immunity. Using a selective CDK7 inhibitor, YKL-5-124, we demonstrated that CDK7 inhibition predominately disrupts cell-cycle progression and induces DNA replication stress and genome instability in small cell lung cancer (SCLC) while simultaneously triggering immune-response signaling. These tumor-intrinsic events provoke a robust immune surveillance program elicited by TÂ cells, which is further enhanced by the addition of immune-checkpoint blockade. Combining YKL-5-124 with anti-PD-1 offers significant survival benefit in multiple highly aggressive murine models of SCLC, providing a rationale for new combination regimens consisting of CDK7 inhibitors and immunotherapies.
PMID: 31883968
ISSN: 1878-3686
CID: 4251032
Pulsatile MEK Inhibition Improves Anti-tumor Immunity and T Cell Function in Murine Kras Mutant Lung Cancer
Choi, Hyejin; Deng, Jiehui; Li, Shuai; Silk, Tarik; Dong, Lauren; Brea, Elliott J; Houghton, Sean; Redmond, David; Zhong, Hong; Boiarsky, Jonathan; Akbay, Esra A; Smith, Paul D; Merghoub, Taha; Wong, Kwok-Kin; Wolchok, Jedd D
KRAS is one of the driver oncogenes in non-small-cell lung cancer (NSCLC) but remains refractory to current modalities of targeted pathway inhibition, which include inhibiting downstream kinase MEK to circumvent KRAS activation. Here, we show that pulsatile, rather than continuous, treatment with MEK inhibitors (MEKis) maintains T cell activation and enables their proliferation. Two MEKis, selumetinib and trametinib, induce T cell activation with increased CTLA-4 expression and, to a lesser extent, PD-1 expression on T cells in vivo after cyclical pulsatile MEKi treatment. In addition, the pulsatile dosing schedule alone shows superior anti-tumor effects and delays the emergence of drug resistance. Furthermore, pulsatile MEKi treatment combined with CTLA-4 blockade prolongs survival in mice bearing tumors with mutant Kras. Our results set the foundation and show the importance of a combinatorial therapeutic strategy using pulsatile targeted therapy together with immunotherapy to optimally enhance tumor delay and promote long-term anti-tumor immunity.
PMID: 30995478
ISSN: 2211-1247
CID: 3810572
Pulsatile MEK inhibition improves antitumor immunity and T-cell function in Kras mutant lung cancer [Meeting Abstract]
Choi, H; Deng, J; Li, S; Silk, T; Brea, E J; Boiarsky, J; Akbay, E A; Smith, P D; Merghoub, T D; Wong, K -K; Wolchok, J D
KRAS is one of the most commonly identified driver oncogene in non-small cell lung cancer (NSCLC) and is commonly associated to NSCLC that is refractory to current available modalities of treatment. Targeted therapy to inhibit MEK has shown promising tumor growth control, but is followed by quick rebound of tumor growth. Recently, cancer immunotherapy has shown great promise by activating T-cells that are suppressed in the tumor microenvironment, especially through targeting co-inhibitory molecules and their counterparts. We sought to identify the most effective therapy for the treatment of KRAS mutant NSCLC patients by targeting cancer cells and activating immune infiltrates at the same time, by studying the impact of MEK inhibition on the immune microenvironment. We utilized Kras mutant lung cancer cell lines and Kras mutant transgenic lung cancer animals. We found that pulsatile treatment of MEK inhibitors activates T-cells and releases their proliferation suppression ex vivo and in vivo. Both selumetinib and trametinib showed highly increased CTLA-4 expression and mild increase of PD-1 in T-cells in pulsatile treatment, compared to continuous treatment in vivo. In addition, the pulsatile schedule alone showed superior antitumor effect and delayed drug resistance, in contrast with continuous dosing schedule. Based on the above observations, we combined pulsatile MEK inhibitor treatment and anti-CTLA-4 and found that it showed most prolonged survival of Kras tumor-bearing mice. All together, our findings will set the foundation for a combinatorial therapeutic strategy using pulsatile targeted therapy together with immunotherapy in patients, to optimally enhance tumor apoptosis and promote long-term immune response simultaneously
EMBASE:626516972
ISSN: 2326-6074
CID: 3729892
Overcome LKB1 mutated cancer resistance to anti-PD1 treatment [Meeting Abstract]
Deng, Jiehui; Thennavan, Aatish; Pan, Yuanwang; Dolgalev, Igor; Chen, Ting; Silver, Heather; Harris, Matthew; Pyon, Val; Li, Fei; Lee, Chelsea; Tsirigos, Aristotelis; Rothenberg, Eli; Perou, Charles M.; Wong, Kwok-Kin
ISI:000488279402164
ISSN: 0008-5472
CID: 5381142
Assessing Therapeutic Efficacy of MEK Inhibition in a KRAS G12C-Driven Mouse Model of Lung Cancer
Li, Shuai; Liu, Shengwu; Deng, Jiehui; Akbay, Esra A; Hai, Josephine; Ambrogio, Chiara; Zhang, Long; Zhou, Fangyu; Jenkins, Russell W; Adeegbe, Dennis O; Gao, Peng; Wang, Xiaoen; Paweletz, Cloud P; Herter-Sprie, Grit S; Chen, Ting; Gutierrez Quiceno, Laura; Zhang, Yanxi; Merlino, Ashley A; Quinn, Max M; Zeng, Yu; Yu, Xiaoting; Liu, Yuting; Fan, Lichao; Aguirre, Andrew J; Barbie, David A; Yi, Xianghua; Wong, Kwok-Kin
PURPOSE/OBJECTIVE:Despite the challenge to directly target mutant KRAS due to its high GTP affinity, some agents are under development against downstream signaling pathways, such as MEK inhibitors. However, it remains controversial whether MEK inhibitors can boost current chemotherapy in KRAS-mutant lung tumors in clinic. Considering the genomic heterogeneity among lung cancer patients, it is valuable to test potential therapeutics in KRAS-mutation driven mouse models. EXPERIMENTAL DESIGN/METHODS:We first compared the pERK1/2 level in lung cancer samples with different KRAS substitutions and generated a new genetically engineered mouse model whose tumor was driven by KRAS G12C, the most common KRAS mutation in lung cancer. Next, we evaluated the efficacy of selumetinib or its combination with chemotherapy, in KRAS G12C tumors compared to KRAS G12D tumors. Moreover, we generated KRAS G12C/p53 R270H model to explore the role of a dominant negative p53 mutation detected in patients in responsiveness to MEK inhibition. RESULTS:We determined higher pERK1/2 in KRAS G12C lung tumors compared to KRAS G12D. Using mouse models, we further identified that KRAS G12C tumors are significantly more sensitive to selumetinib compared with Kras G12D tumors. MEK inhibition significantly increased chemotherapeutic efficacy and progression-free survival of KRAS G12C mice. Interestingly, p53 co-mutation rendered KRAS G12C lung tumors less sensitive to combination treatment with selumetinib and chemotherapy. CONCLUSIONS:Our data demonstrate that unique KRAS mutations and concurrent mutations in tumor-suppressor genes are important factors for lung tumor responses to MEK inhibitor. Our preclinical study supports further clinical evaluation of combined MEK inhibition and chemotherapy for lung cancer patients harboring KRAS G12C and wildtype p53 status.
PMID: 29945997
ISSN: 1078-0432
CID: 3162862