Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:evrong01

Total Results:

37


DPH1 syndrome: two novel variants and structural and functional analyses of seven missense variants identified in syndromic patients

Urreizti, Roser; Mayer, Klaus; Evrony, Gilad D; Said, Edith; Castilla-Vallmanya, Laura; Cody, Neal A L; Plasencia, Guillem; Gelb, Bruce D; Grinberg, Daniel; Brinkmann, Ulrich; Webb, Bryn D; Balcells, Susanna
DPH1variants have been associated with an ultra-rare and severe neurodevelopmental disorder, mainly characterized by variable developmental delay, short stature, dysmorphic features, and sparse hair. We have identified four new patients (from two different families) carrying novel variants in DPH1, enriching the clinical delineation of the DPH1 syndrome. Using a diphtheria toxin ADP-ribosylation assay, we have analyzed the activity of seven identified variants and demonstrated compromised function for five of them [p.(Leu234Pro); p.(Ala411Argfs*91); p.(Leu164Pro); p.(Leu125Pro); and p.(Tyr112Cys)]. We have built a homology model of the human DPH1-DPH2 heterodimer and have performed molecular dynamics simulations to study the effect of these variants on the catalytic sites as well as on the interactions between subunits of the heterodimer. The results show correlation between loss of activity, reduced size of the opening to the catalytic site, and changes in the size of the catalytic site with clinical severity. This is the first report of functional tests of DPH1 variants associated with the DPH1 syndrome. We demonstrate that the in vitro assay for DPH1 protein activity, together with structural modeling, are useful tools for assessing the effect of the variants on DPH1 function and may be used for predicting patient outcomes and prognoses.
PMID: 30877278
ISSN: 1476-5438
CID: 3733592

Correction: DPH1 syndrome: two novel variants and structural and functional analyses of seven missense variants identified in syndromic patients

Urreizti, Roser; Mayer, Klaus; Evrony, Gilad D; Said, Edith; Castilla-Vallmanya, Laura; Cody, Neal A L; Plasencia, Guillem; Gelb, Bruce D; Grinberg, Daniel; Brinkmann, Ulrich; Webb, Bryn D; Balcells, Susanna
Following the publication of the article, it was noted that the last column in Table 1, the total % should have read 5/8 (62.5) for the 'Epilepsy' row, and not 5.7 (71.4). This has now been amended in the HTML and PDF of the original article.
PMID: 31477843
ISSN: 1476-5438
CID: 4067022

Integrated genome and transcriptome sequencing identifies a noncoding mutation in the genome replication factor DONSON as the cause of microcephaly-micromelia syndrome

Evrony, Gilad D; Cordero, Dwight R; Shen, Jun; Partlow, Jennifer N; Yu, Timothy W; Rodin, Rachel E; Hill, R Sean; Coulter, Michael E; Lam, Anh-Thu N; Jayaraman, Divya; Gerrelli, Dianne; Diaz, Diana G; Santos, Chloe; Morrison, Victoria; Galli, Antonella; Tschulena, Ulrich; Wiemann, Stefan; Martel, M Jocelyne; Spooner, Betty; Ryu, Steven C; Elhosary, Princess C; Richardson, Jillian M; Tierney, Danielle; Robinson, Christopher A; Chibbar, Rajni; Diudea, Dana; Folkerth, Rebecca; Wiebe, Sheldon; Barkovich, A James; Mochida, Ganeshwaran H; Irvine, James; Lemire, Edmond G; Blakley, Patricia; Walsh, Christopher A
While next-generation sequencing has accelerated the discovery of human disease genes, progress has been largely limited to the "low hanging fruit" of mutations with obvious exonic coding or canonical splice site impact. In contrast, the lack of high-throughput, unbiased approaches for functional assessment of most noncoding variants has bottlenecked gene discovery. We report the integration of transcriptome sequencing (RNA-seq), which surveys all mRNAs to reveal functional impacts of variants at the transcription level, into the gene discovery framework for a unique human disease, microcephaly-micromelia syndrome (MMS). MMS is an autosomal recessive condition described thus far in only a single First Nations population and causes intrauterine growth restriction, severe microcephaly, craniofacial anomalies, skeletal dysplasia, and neonatal lethality. Linkage analysis of affected families, including a very large pedigree, identified a single locus on Chromosome 21 linked to the disease (LOD > 9). Comprehensive genome sequencing did not reveal any pathogenic coding or canonical splicing mutations within the linkage region but identified several nonconserved noncoding variants. RNA-seq analysis detected aberrant splicing in DONSON due to one of these noncoding variants, showing a causative role for DONSON disruption in MMS. We show that DONSON is expressed in progenitor cells of embryonic human brain and other proliferating tissues, is co-expressed with components of the DNA replication machinery, and that Donson is essential for early embryonic development in mice as well, suggesting an essential conserved role for DONSON in the cell cycle. Our results demonstrate the utility of integrating transcriptomics into the study of human genetic disease when DNA sequencing alone is not sufficient to reveal the underlying pathogenic mutation.
PMID: 28630177
ISSN: 1549-5469
CID: 3332592

One brain, many genomes

Evrony, Gilad D
PMID: 27811258
ISSN: 1095-9203
CID: 3332582

A PIECE OF MY MIND. A Wild Rotation

Evrony, Gilad D
PMID: 27533153
ISSN: 1538-3598
CID: 3332572

Resolving rates of mutation in the brain using single-neuron genomics

Evrony, Gilad D; Lee, Eunjung; Park, Peter J; Walsh, Christopher A
Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies.
PMID: 26901440
ISSN: 2050-084x
CID: 3332562

Somatic mutation in single human neurons tracks developmental and transcriptional history

Lodato, Michael A; Woodworth, Mollie B; Lee, Semin; Evrony, Gilad D; Mehta, Bhaven K; Karger, Amir; Lee, Soohyun; Chittenden, Thomas W; D'Gama, Alissa M; Cai, Xuyu; Luquette, Lovelace J; Lee, Eunjung; Park, Peter J; Walsh, Christopher A
Neurons live for decades in a postmitotic state, their genomes susceptible to DNA damage. Here we survey the landscape of somatic single-nucleotide variants (SNVs) in the human brain. We identified thousands of somatic SNVs by single-cell sequencing of 36 neurons from the cerebral cortex of three normal individuals. Unlike germline and cancer SNVs, which are often caused by errors in DNA replication, neuronal mutations appear to reflect damage during active transcription. Somatic mutations create nested lineage trees, allowing them to be dated relative to developmental landmarks and revealing a polyclonal architecture of the human cerebral cortex. Thus, somatic mutations in the brain represent a durable and ongoing record of neuronal life history, from development through postmitotic function.
PMID: 26430121
ISSN: 1095-9203
CID: 3332552

Loss of PCLO function underlies pontocerebellar hypoplasia type III

Ahmed, Mustafa Y; Chioza, Barry A; Rajab, Anna; Schmitz-Abe, Klaus; Al-Khayat, Aisha; Al-Turki, Saeed; Baple, Emma L; Patton, Michael A; Al-Memar, Ali Y; Hurles, Matthew E; Partlow, Jennifer N; Hill, R Sean; Evrony, Gilad D; Servattalab, Sarah; Markianos, Kyriacos; Walsh, Christopher A; Crosby, Andrew H; Mochida, Ganeshwaran H
OBJECTIVE:To identify the genetic cause of pontocerebellar hypoplasia type III (PCH3). METHODS:We studied the original reported pedigree of PCH3 and performed genetic analysis including genome-wide single nucleotide polymorphism genotyping, linkage analysis, whole-exome sequencing, and Sanger sequencing. Human fetal brain RNA sequencing data were then analyzed for the identified candidate gene. RESULTS:The affected individuals presented with severe global developmental delay and seizures starting in the first year of life. Brain MRI of an affected individual showed diffuse atrophy of the cerebrum, cerebellum, and brainstem. Genome-wide single nucleotide polymorphism analysis confirmed the linkage to chromosome 7q we previously reported, and showed no other genomic areas of linkage. Whole-exome sequencing of 2 affected individuals identified a shared homozygous, nonsense variant in the PCLO (piccolo) gene. This variant segregated with the disease phenotype in the pedigree was rare in the population and was predicted to eliminate the PDZ and C2 domains in the C-terminus of the protein. RNA sequencing data of human fetal brain showed that PCLO was moderately expressed in the developing cerebral cortex. CONCLUSIONS:Here, we show that a homozygous, nonsense PCLO mutation underlies the autosomal recessive neurodegenerative disorder, PCH3. PCLO is a component of the presynaptic cytoskeletal matrix, and is thought to be involved in regulation of presynaptic proteins and synaptic vesicles. Our findings suggest that PCLO is crucial for the development and survival of a wide range of neuronal types in the human brain.
PMID: 25832664
ISSN: 1526-632x
CID: 3332542

Cell lineage analysis in human brain using endogenous retroelements

Evrony, Gilad D; Lee, Eunjung; Mehta, Bhaven K; Benjamini, Yuval; Johnson, Robert M; Cai, Xuyu; Yang, Lixing; Haseley, Psalm; Lehmann, Hillel S; Park, Peter J; Walsh, Christopher A
Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sublineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain.
PMID: 25569347
ISSN: 1097-4199
CID: 3332522

Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain

Cai, Xuyu; Evrony, Gilad D; Lehmann, Hillel S; Elhosary, Princess C; Mehta, Bhaven K; Poduri, Annapurna; Walsh, Christopher A
De novo copy-number variants (CNVs) can cause neuropsychiatric disease, but the degree to which they occur somatically, and during development, is unknown. Single-cell whole-genome sequencing (WGS) in >200 single cells, including >160 neurons from three normal and two pathological human brains, sensitively identified germline trisomy of chromosome 18 but found most (≥ 95%) neurons in normal brain tissue to be euploid. Analysis of a patient with hemimegalencephaly (HMG) due to a somatic CNV of chromosome 1q found unexpected tetrasomy 1q in ∼ 20% of neurons, suggesting that CNVs in a minority of cells can cause widespread brain dysfunction. Single-cell analysis identified large (>1 Mb) clonal CNVs in lymphoblasts and in single neurons from normal human brain tissue, suggesting that some CNVs occur during neurogenesis. Many neurons contained one or more large candidate private CNVs, including one at chromosome 15q13.2-13.3, a site of duplication in neuropsychiatric conditions. Large private and clonal somatic CNVs occur in normal and diseased human brains.
PMID: 25159146
ISSN: 2211-1247
CID: 3332512