Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:gusari01

Total Results:

23


Control of intrinsic transcription termination by N and NusA: the basic mechanisms

Gusarov I; Nudler E
Intrinsic transcription termination plays a crucial role in regulating gene expression in prokaryotes. After a short pause, the termination signal appears in RNA as a hairpin that destabilizes the elongation complex (EC). We demonstrate that negative and positive termination factors control the efficiency of termination primarily through a direct modulation of hairpin folding and, to a much lesser extent, by changing pausing at the point of termination. The mechanism controlling hairpin formation at the termination point relies on weak protein interactions with single-stranded RNA, which corresponds to the upstream portion of the hairpin. Escherichia coli NusA protein destabilizes these interactions and thus promotes hairpin folding and termination. Stabilization of these contacts by phage lambda N protein leads to antitermination
PMID: 11719185
ISSN: 0092-8674
CID: 26542

The mechanism of intrinsic transcription termination

Gusarov I; Nudler E
In bacteria, an intrinsic transcription termination signal appears in RNA as a hairpin followed by approximately eight uridines (U stretch) at the 3' terminus. This signal leads to rapid dissociation of the ternary elongation complex (TEC) into RNA, DNA, and an RNA polymerase. We demonstrate that the hairpin inactivates and then destabilizes TEC by weakening interactions in the RNA-DNA hybrid-binding site and the RNA-binding site that hold TEC together. Formation of the hairpin is restricted to the moment when TEC reaches the point of termination and depends upon melting of four to five hybrid base pairs that follow the hairpin's stem. The U stretch-induced pausing at the point of termination is crucial, providing additional time for hairpin formation. These results explain the mechanism of termination and aid in understanding of how cellular factors modulate this process
PMID: 10230402
ISSN: 1097-2765
CID: 56433

Spatial organization of transcription elongation complex in Escherichia coli

Nudler E; Gusarov I; Avetissova E; Kozlov M; Goldfarb A
During RNA synthesis in the ternary elongation complex, RNA polymerase enzyme holds nucleic acids in three contiguous sites: the double-stranded DNA-binding site (DBS) ahead of the transcription bubble, the RNA-DNA heteroduplex-binding site (HBS), and the RNA-binding site (RBS) upstream of HBS. Photochemical cross-linking allowed mapping of the DNA and RNA contacts to specific positions on the amino acid sequence. Unexpectedly, the same protein regions were found to participate in both DBS and RBS. Thus, DNA entry and RNA exit occur close together in the RNA polymerase molecule, suggesting that the three sites constitute a single unit. The results explain how RNA in the integrated unit RBS-HBS-DBS may stabilize the ternary complex, whereas a hairpin in RNA result in its dissociation
PMID: 9665887
ISSN: 0036-8075
CID: 7720