Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:huangt03

Total Results:

57


Transcription-replication conflicts as a source of common fragile site instability caused by BMI1-RNF2 deficiency

Sanchez, Anthony; de Vivo, Angelo; Tonzi, Peter; Kim, Jeonghyeon; Huang, Tony T; Kee, Younghoon
Common fragile sites (CFSs) are breakage-prone genomic loci, and are considered to be hotspots for genomic rearrangements frequently observed in cancers. Understanding the underlying mechanisms for CFS instability will lead to better insight on cancer etiology. Here we show that Polycomb group proteins BMI1 and RNF2 are suppressors of transcription-replication conflicts (TRCs) and CFS instability. Cells depleted of BMI1 or RNF2 showed slower replication forks and elevated fork stalling. These phenotypes are associated with increase occupancy of RNA Pol II (RNAPII) at CFSs, suggesting that the BMI1-RNF2 complex regulate RNAPII elongation at these fragile regions. Using proximity ligase assays, we showed that depleting BMI1 or RNF2 causes increased associations between RNAPII with EdU-labeled nascent forks and replisomes, suggesting increased TRC incidences. Increased occupancy of a fork protective factor FANCD2 and R-loop resolvase RNH1 at CFSs are observed in RNF2 CRISPR-KO cells, which are consistent with increased transcription-associated replication stress in RNF2-deficient cells. Depleting FANCD2 or FANCI proteins further increased genomic instability and cell death of the RNF2-deficient cells, suggesting that in the absence of RNF2, cells depend on these fork-protective factors for survival. These data suggest that the Polycomb proteins have non-canonical roles in suppressing TRC and preserving genomic integrity.
PMID: 32142505
ISSN: 1553-7404
CID: 4340892

Using Primary SCG Neuron Cultures to Study Molecular Determinants of HSV-1 Latency and Reactivation

Hu, Hui-Lan; Srinivas, Kalanghad Puthankalam; Mohr, Ian; Huang, Tony T; Wilson, Angus C
We describe a primary neuronal culture system suitable for molecular characterization of herpes simplex virus type 1 (HSV-1) infection, latency, and reactivation. While several alternative models are available, including infections of live animal or explanted ganglia, these are complicated by the presence of multiple cell types, including immune cells, and difficulties in manipulating the neuronal environment. The highly pure neuron culture system described here can be readily manipulated and is ideal for molecular studies that focus exclusively on the relationship between the virus and host neuron, the fundamental unit of latency. As such this model allows for detailed investigations of both viral and neuronal factors involved in the establishment and maintenance of HSV-1 latency and in viral reactivation induced by defined stimuli.
PMID: 31617183
ISSN: 1940-6029
CID: 4140472

TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency

Hu, Hui-Lan; Shiflett, Lora A; Kobayashi, Mariko; Chao, Moses V; Wilson, Angus C; Mohr, Ian; Huang, Tony T
The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2β-DNA cleavage complex (TOP2βcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2βcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.
PMID: 30930055
ISSN: 1097-4164
CID: 3783782

Role of Y-family translesion DNA polymerases in replication stress: Implications for new cancer therapeutic targets

Tonzi, Peter; Huang, Tony T
DNA replication stress, defined as the slowing or stalling of replication forks, is considered an emerging hallmark of cancer and a major contributor to genomic instability associated with tumorigenesis (Macheret and Halazonetis, 2015). Recent advances have been made in attempting to target DNA repair factors involved in alleviating replication stress to potentiate genotoxic treatments. Various inhibitors of ATR and Chk1, the two major kinases involved in the intra-S-phase checkpoint, are currently in Phase I and II clinical trials [2]. In addition, currently approved inhibitors of Poly-ADP Ribose Polymerase (PARP) show synthetic lethality in cells that lack double-strand break repair such as in BRCA1/2 deficient tumors [3]. These drugs have also been shown to exacerbate replication stress by creating a DNA-protein crosslink, termed PARP 'trapping', and this is now thought to contribute to the therapeutic efficacy. Translesion synthesis (TLS) is a mechanism whereby special repair DNA polymerases accommodate and tolerate various DNA lesions to allow for damage bypass and continuation of DNA replication (Yang and Gao, 2018). This class of proteins is best characterized by the Y-family, encompassing DNA polymerases (Pols) Kappa, Eta, Iota, and Rev1. While best studied for their ability to bypass physical lesions on the DNA, there is accumulating evidence for these proteins in coping with various natural replication fork barriers and alleviating replication stress. In this mini-review, we will highlight some of these recent advances, and discuss why targeting the TLS pathway may be a mechanism of enhancing cancer-associated replication stress. Exacerbation of replication stress can lead to increased genome instability, which can be toxic to cancer cells and represent a therapeutic vulnerability.
PMID: 30954011
ISSN: 1568-7856
CID: 3858222

Aberrant activation of beta-catenin signaling drives glioma tumorigenesis via USP1-mediated stabilization of EZH2

Ma, Li; Lin, Kangyu; Chang, Guoqiang; Chen, Yiwen; Yue, Chen; Guo, Qing; Zhang, Sicong; Jia, Zhiliang; Huang, Tony T; Zhou, Aidong; Huang, Suyun
Aberrant activation of beta-catenin signaling is a critical driver for tumorigenesis, but the mechanism underlying this activation is not completely understood. In this study, we demonstrate a critical role of beta-catenin signaling in stabilization of Enhancer of Zeste Homolog 2 (EZH2) and control of EZH2-mediated gene repression in oncogenesis. beta-catenin/TCF4 activated transcription of the deubiquitinase USP1, which then interacted with and deubiquitinated EZH2 directly. USP1-mediated stabilization of EZH2 promoted its recruitment to the promoters of CDKN1B, RUNX3, and HOXA5, resulting in enhanced enrichment of histone H3K27me3 and repression of target gene expression. In human glioma specimens, expression levels of nuclear β-catenin, USP1, and EZH2 correlated with one another. Depletion of beta-catenin/USP1/EZH2 repressed glioma cell proliferation in vitro and tumor formation in vivo. Our findings indicate that a beta-catenin-USP1-EZH2 axis orchestrates the interplay between dysregulated beta-catenin signaling and EZH2-mediated gene epigenetic silencing during glioma tumorigenesis.
PMID: 30425057
ISSN: 1538-7445
CID: 3457992

Transcription shapes DNA replication initiation and termination in human cells

Chen, Yu-Hung; Keegan, Sarah; Kahli, Malik; Tonzi, Peter; Fenyö, David; Huang, Tony T; Smith, Duncan J
Although DNA replication is a fundamental aspect of biology, it is not known what determines where DNA replication starts and stops in the human genome. We directly identified and quantitatively compared sites of replication initiation and termination in untransformed human cells. We found that replication preferentially initiates at the transcription start site of genes occupied by high levels of RNA polymerase II, and terminates at their polyadenylation sites, thereby ensuring global co-directionality of transcription and replication, particularly at gene 5' ends. During replication stress, replication initiation is stimulated downstream of genes and termination is redistributed to gene bodies; this globally reorients replication relative to transcription around gene 3' ends. These data suggest that replication initiation and termination are coupled to transcription in human cells, and propose a model for the impact of replication stress on genome integrity.
PMID: 30598550
ISSN: 1545-9985
CID: 3563352

Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery

Tonzi, Peter; Yin, Yandong; Lee, Chelsea Wei Ting; Rothenberg, Eli; Huang, Tony T
DNA replication stress is often defined by the slowing or stalling of replication fork progression leading to local or global DNA synthesis inhibition. Failure to resolve replication stress in a timely manner contribute towards cell cycle defects, genome instability and human disease; however, the mechanism for fork recovery remains poorly defined. Here we show that the translesion DNA polymerase (Pol) kappa, a DinB orthologue, has a unique role in both protecting and restarting stalled replication forks under conditions of nucleotide deprivation. Importantly, Pol kappa-mediated DNA synthesis during hydroxyurea (HU)-dependent fork restart is regulated by both the Fanconi Anemia (FA) pathway and PCNA polyubiquitination. Loss of Pol kappa prevents timely rescue of stalled replication forks, leading to replication-associated genomic instability, and a p53-dependent cell cycle defect. Taken together, our results identify a previously unanticipated role for Pol kappa in promoting DNA synthesis and replication stress recovery at sites of stalled forks.
PMID: 30422114
ISSN: 2050-084x
CID: 3456962

In a Class of Its Own: A New Family of Deubiquitinases Promotes Genome Stability

Coleman, Kate E; Huang, Tony T
Several proteins are ubiquitylated in response to genotoxic stress; however, the roles of deubiquitinases (DUBs) in reversing these modifications are less well characterized. Two independent studies by Kwasna et al. (2018) and Haahr et al. (2018) identify a new type of cysteine protease DUB called ZUFSP, which cleaves K63-linked polyubiquitin chains at DNA damage sites to promote genome stability.
PMID: 29625031
ISSN: 1097-4164
CID: 3026192

The COP9 signalosome inhibits Cullin-RING E3 ubiquitin ligases independently of its deneddylase activity

Suisse, Annabelle; Békés, Miklós; Huang, Tony T; Treisman, Jessica E
The COP9 signalosome inhibits the activity of Cullin-RING E3 ubiquitin ligases by removing Nedd8 modifications from their Cullin subunits. Neddylation renders these complexes catalytically active, but deneddylation is also necessary for them to exchange adaptor subunits and avoid auto-ubiquitination. Although deneddylation is thought to be the primary function of the COP9 signalosome, additional activities have been ascribed to some of its subunits. We recently showed that COP9 subunits protect the transcriptional repressor and tumor suppressor Capicua from two distinct modes of degradation. Deneddylation by the COP9 signalosome inactivates a Cullin 1 complex that ubiquitinates Capicua following its phosphorylation by MAP kinase in response to Epidermal Growth Factor Receptor signaling. The CSN1b subunit also stabilizes unphosphorylated Capicua to control its basal level, independently of the deneddylase function of the complex. Here we further examine the importance of deneddylation for COP9 functions in vivo. We use an uncleavable form of Nedd8 to show that preventing deneddylation does not reproduce the effects of loss of COP9. In contrast, in the presence of COP9, conjugation to uncleavable Nedd8 renders Cullins unable to promote the degradation of their substrates. Our results suggest that irreversible neddylation prolongs COP9 binding to and inhibition of Cullin-based ubiquitin ligases.
PMID: 29355077
ISSN: 1933-6942
CID: 2929412

SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase function

Coleman, Kate E; Bekes, Miklos; Chapman, Jessica R; Crist, Sarah B; Jones, Mathew Jk; Ueberheide, Beatrix M; Huang, Tony T
NEDD8 is a ubiquitin-like modifier most well-studied for its role in activating the largest family of ubiquitin E3 ligases, the cullin-RING ligases (CRLs). While many non-cullin neddylation substrates have been proposed over the years, validation of true NEDD8 targets has been challenging, as overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery. Here, we developed a deconjugation-resistant form of NEDD8 to stabilize the neddylated form of cullins and other non-cullin substrates. Using this strategy, we identified Ubc12, a NEDD8-specific E2 conjugating enzyme, as a substrate for auto-neddylation. Furthermore, we characterized SENP8/DEN1 as the protease that counteracts Ubc12 auto-neddylation, and observed aberrant neddylation of Ubc12 and other NEDD8 conjugation pathway components in SENP8-deficient cells. Importantly, loss of SENP8 function contributes to accumulation of CRL substrates and defective cell cycle progression. Thus, our study highlights the importance of SENP8 in maintaining proper neddylation levels for CRL-dependent proteostasis.
PMCID:5419743
PMID: 28475037
ISSN: 2050-084x
CID: 2546892