Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:koidea01

Total Results:

135


Crystal structures of bacterial small multidrug resistance transporter EmrE in complex with structurally diverse substrates

Kermani, Ali A; Burata, Olive E; Koff, B Ben; Koide, Akiko; Koide, Shohei; Stockbridge, Randy B
Proteins from the bacterial small multidrug resistance (SMR) family are proton-coupled exporters of diverse antiseptics and antimicrobials, including polyaromatic cations and quaternary ammonium compounds. The transport mechanism of the Escherichia coli transporter, EmrE, has been studied extensively, but a lack of high-resolution structural information has impeded a structural description of its molecular mechanism. Here, we apply a novel approach, multipurpose crystallization chaperones, to solve several structures of EmrE, including a 2.9 Ã… structure at low pH without substrate. We report five additional structures in complex with structurally diverse transported substrates, including quaternary phosphonium, quaternary ammonium, and planar polyaromatic compounds. These structures show that binding site tryptophan and glutamate residues adopt different rotamers to conform to disparate structures without requiring major rearrangements of the backbone structure. Structural and functional comparison to Gdx-Clo, an SMR protein that transports a much narrower spectrum of substrates, suggests that in EmrE, a relatively sparse hydrogen bond network among binding site residues permits increased sidechain flexibility.
PMCID:9000954
PMID: 35254261
ISSN: 2050-084x
CID: 5200182

Identification of the nucleotide-free state as a therapeutic vulnerability for inhibition of selected oncogenic RAS mutants

Khan, Imran; Koide, Akiko; Zuberi, Mariyam; Ketavarapu, Gayatri; Denbaum, Eric; Teng, Kai Wen; Rhett, J Matthew; Spencer-Smith, Russell; Hobbs, G Aaron; Camp, Ernest Ramsay; Koide, Shohei; O'Bryan, John P
RAS guanosine triphosphatases (GTPases) are mutated in nearly 20% of human tumors, making them an attractive therapeutic target. Following our discovery that nucleotide-free RAS (apo RAS) regulates cell signaling, we selectively target this state as an approach to inhibit RAS function. Here, we describe the R15 monobody that exclusively binds the apo state of all three RAS isoforms in vitro, regardless of the mutation status, and captures RAS in the apo state in cells. R15 inhibits the signaling and transforming activity of a subset of RAS mutants with elevated intrinsic nucleotide exchange rates (i.e., fast exchange mutants). Intracellular expression of R15 reduces the tumor-forming capacity of cancer cell lines driven by select RAS mutants and KRAS(G12D)-mutant patient-derived xenografts (PDXs). Thus, our approach establishes an opportunity to selectively inhibit a subset of RAS mutants by targeting the apo state with drug-like molecules.
PMID: 35139380
ISSN: 2211-1247
CID: 5156812

Engineering Binders with Exceptional Selectivity

Teng, Kai Wen; Koide, Akiko; Koide, Shohei
Molecular display technologies have enabled the generation of synthetic binders with high affinities against a variety of antigens. However, engineering binders with high selectivity is still a challenging task. Here, we illustrate points to consider in developing highly selective binders against antigens of interest. We describe a systematic strategy for sorting selective binders using the yeast display technology. Using the approach described, our group has overcome molecular recognition challenges and developed a series of synthetic binders with exceptional selectivity against diverse antigens.
PMID: 35482189
ISSN: 1940-6029
CID: 5205722

High-valency anti-CD99 antibodies toward the treatment of T cell acute lymphoblastic leukemia

Romero, Larizbeth A; Hattori, Takamitsu; A E Ali, Mohamed; Ketavarapu, Gayatri; Koide, Akiko; Park, Christopher Y; Koide, Shohei
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia that currently requires intensive chemotherapy. While childhood T-ALL is associated with high cure rates, adult T-ALL is not, and both are associated with significant short- and long-term morbidities. Thus, less toxic and effective strategies to treat T-ALL are needed. CD99 is overexpressed on T-ALL blasts at diagnosis and at relapse. Although targeting CD99 with cytotoxic antibodies has been proposed, the molecular features required for their activity are undefined. We identified human antibodies that selectively bound to the extracellular domain human CD99 and the most potent clone, 10A1, shared an epitope with a previously described cytotoxic IgM antibody. We engineered clone 10A1 in bivalent, trivalent, tetravalent, and dodecavalent formats. Increasing the antibody valency beyond two had no effects on binding to T-ALL cells. In contrast, a valency of ≥3 was required for cytotoxicity, suggesting a mechanism of action in which an antibody clusters ≥3 CD99 molecules to induce cytotoxicity. We developed a human IgG-based tetravalent version of 10A1 that exhibited cytotoxic activity to T-ALL cells but not to healthy peripheral blood cells. The crystal structure of the 10A1 Fab in complex with a CD99 fragment revealed that the antibody primarily recognizes a proline-rich motif (PRM) of CD99 in a manner reminiscent of SH3-PRM interactions. This work further validates CD99 as a promising therapeutic target in T-ALL and defines a pathway toward the development of a selective therapy against T-ALL.
PMID: 34958778
ISSN: 1089-8638
CID: 5108052

Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara A; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Pérez-Pérez, Lizzette; Shen, Guomiao; Jour, George; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel H; Weiden, Michael; Heguy, Adriana; Evans, Laura; Uyeki, Timothy M; Clemente, Jose C; de Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian V; Koide, Shohei; Stapleford, Kenneth A; Khanna, Kamal M; Ghedin, Elodie; Segal, Leopoldo N
Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.
PMID: 34465900
ISSN: 2058-5276
CID: 4998422

Two-dimensional multiplexed assay for rapid and deep SARS-CoV-2 serology profiling and for machine learning prediction of neutralization capacity [PrePrint]

Koide, Akiko; Panchenko, Tatyana; Wang, Chan; Thannickal, Sara A; Romero, Larizbeth A; Teng, Kai Wen; Li, Francesca-Zhoufan; Akkappedi, Padma; Corrado, Alexis D; Caro, Jessica; Diefenbach, Catherine; Samanovic, Marie I; Mulligan, Mark J; Hattori, Takamitsu; Stapleford, Kenneth A; Li, Huilin; Koide, Shohei
Antibody responses serve as the primary protection against SARS-CoV-2 infection through neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens from a single measurement. Here, we applied our assay to profile IgG, IgM and IgA levels against the spike antigen, its receptor-binding domain and natural and designed mutants. Machine learning algorithms trained on the 2D-MBBA data substantially improve the prediction of neutralization capacity against the authentic SARS-CoV-2 virus of serum samples of convalescent patients. The algorithms also helped identify a set of antibody isotypeâ€"antigen datasets that contributed to the prediction, which included those targeting regions outside the receptor-binding interface of the spike protein. We applied the assay to profile samples from vaccinated, immune-compromised patients, which revealed differences in the antibody profiles between convalescent and vaccinated samples. Our approach can rapidly provide deep antibody profiles and neutralization prediction from essentially a drop of blood without the need of BSL-3 access and provides insights into the nature of neutralizing antibodies. It may be further developed for evaluating neutralizing capacity for new variants and future pathogens.
PMCID:8351774
PMID: 34373852
ISSN: 2692-8205
CID: 5080802

Zinc binding alters the conformational dynamics and drives the transport cycle of the cation diffusion facilitator YiiP

Lopez-Redondo, Maria; Fan, Shujie; Koide, Akiko; Koide, Shohei; Beckstein, Oliver; Stokes, David L
YiiP is a secondary transporter that couples Zn2+ transport to the proton motive force. Structural studies of YiiP from prokaryotes and Znt8 from humans have revealed three different Zn2+ sites and a conserved homodimeric architecture. These structures define the inward-facing and outward-facing states that characterize the archetypal alternating access mechanism of transport. To study the effects of Zn2+ binding on the conformational transition, we use cryo-EM together with molecular dynamics simulation to compare structures of YiiP from Shewanella oneidensis in the presence and absence of Zn2+. To enable single-particle cryo-EM, we used a phage-display library to develop a Fab antibody fragment with high affinity for YiiP, thus producing a YiiP/Fab complex. To perform MD simulations, we developed a nonbonded dummy model for Zn2+ and validated its performance with known Zn2+-binding proteins. Using these tools, we find that, in the presence of Zn2+, YiiP adopts an inward-facing conformation consistent with that previously seen in tubular crystals. After removal of Zn2+ with high-affinity chelators, YiiP exhibits enhanced flexibility and adopts a novel conformation that appears to be intermediate between inward-facing and outward-facing states. This conformation involves closure of a hydrophobic gate that has been postulated to control access to the primary transport site. Comparison of several independent cryo-EM maps suggests that the transition from the inward-facing state is controlled by occupancy of a secondary Zn2+ site at the cytoplasmic membrane interface. This work enhances our understanding of individual Zn2+ binding sites and their role in the conformational dynamics that govern the transport cycle.
PMCID:8282283
PMID: 34254979
ISSN: 1540-7748
CID: 4950422

Mechanism of disease and therapeutic rescue of Dok7 congenital myasthenia

Oury, Julien; Zhang, Wei; Leloup, Nadia; Koide, Akiko; Corrado, Alexis D; Ketavarapu, Gayatri; Hattori, Takamitsu; Koide, Shohei; Burden, Steven J
Congenital myasthenia (CM) is a devastating neuromuscular disease, and mutations in DOK7, an adaptor protein that is crucial for forming and maintaining neuromuscular synapses, are a major cause of CM1,2. The most common disease-causing mutation (DOK71124_1127 dup) truncates DOK7 and leads to the loss of two tyrosine residues that are phosphorylated and recruit CRK proteins, which are important for anchoring acetylcholine receptors at synapses. Here we describe a mouse model of this common form of CM (Dok7CM mice) and a mouse with point mutations in the two tyrosine residues (Dok72YF). We show that Dok7CM mice had severe deficits in neuromuscular synapse formation that caused neonatal lethality. Unexpectedly, these deficits were due to a severe deficiency in phosphorylation and activation of muscle-specific kinase (MUSK) rather than a deficiency in DOK7 tyrosine phosphorylation. We developed agonist antibodies against MUSK and show that these antibodies restored neuromuscular synapse formation and prevented neonatal lethality and late-onset disease in Dok7CM mice. These findings identify an unexpected cause for disease and a potential therapy for both DOK7 CM and other forms of CM caused by mutations in AGRIN, LRP4 or MUSK, and illustrate the potential of targeted therapy to rescue congenital lethality.
PMID: 34163073
ISSN: 1476-4687
CID: 4918552

Impaired Humoral Immunity to SARS-CoV-2 Vaccination in Non-Hodgkin Lymphoma and CLL Patients

Diefenbach, Catherine; Caro, Jessica; Koide, Akiko; Grossbard, Michael; Goldberg, Judith D; Raphael, Bruce; Hymes, Kenneth; Moskovits, Tibor; Kreditor, Maxim; Kaminetzky, David; Fleur-Lominy, Shella Saint; Choi, Jun; Thannickal, Sara A; Stapleford, Kenneth A; Koide, Shohei
Patients with hematologic malignancies are a high priority for SARS-CoV-2 vaccination, yet the benefit they will derive is uncertain. We investigated the humoral response to vaccination in 53 non-Hodgkin lymphoma (NHL), Hodgkin lymphoma (HL), or CLL patients. Peripheral blood was obtained 2 weeks after first vaccination and 6 weeks after second vaccination for antibody profiling using the multiplex bead-binding assay. Serum IgG, IgA, and IgM antibody levels to the spike specific receptor binding domain (RBD) were evaluated as a measure of response. Subsequently, antibody-positive serum were assayed for neutralization capacity against authentic SARS-CoV-2. Histology was 68% lymphoma and 32% CLL; groups were: patients receiving anti-CD20-based therapy (45%), monitored with disease (28%), receiving BTK inhibitors (19%), or chemotherapy (all HL) (8%). SARS-CoV-2 specific RBD IgG antibody response was decreased across all NHL and CLL groups: 25%, 73%, and 40%, respectively. Antibody IgG titers were significantly reduced (p < 0.001) for CD20 treated and targeted therapy patients, and (p = 0.003) for monitored patients. In 94% of patients evaluated after first and second vaccination, antibody titers did not significantly boost after second vaccination. Only 13% of CD20 treated and 13% of monitored patients generated neutralizing antibodies to SARS-CoV-2 with ICD50s 135 to 1767, and 445 and > 10240. This data has profound implications given the current guidance relaxing masking restrictions and for timing of vaccinations. Unless immunity is confirmed with laboratory testing, these patients should continue to mask, socially distance, and to avoid close contact with non-vaccinated individuals.
PMCID:8183024
PMID: 34100025
ISSN: n/a
CID: 4899722

Versatile strategy to enhance nanomedicine delivery to graft endothelial cells [Meeting Abstract]

Albert, C; Bracaglia, L G; Koide, A; DiRito, J; Lysyy, T; Edwards, C; Langford, J T; Haakinson, D; Hosgood, S A; Nicholson, M L; Pober, J S; Saltzman, W M; Kiode, S; Tietjen, G
Purpose: Efficient delivery of therapeutics to graft endothelial cells (EC) can potentially render organs more resistant to injury, improving clinical outcomes. Specific targeting of polymeric nanoparticles (NPs) during ex vivo machine perfusion prior to transplant can allow both sustained delivery and increased local concentration of an encapsulated therapeutic. Despite ready access, effective retention by ECs lining graft vessels remains as a significant hurdle. Here we describe a new targeting approach based on oriented presentation of a targeting antibody using a linker called a "monobody" (Mb).
Method(s): Mbs are synthetic binding proteins with a unique cysteine engineered to enable site-specific conjugation to NPs through thiol chemistry. Specific Mbs can potently and selectively bind to the Fc region of a targeting antibody (Ab), forming Ab-Mb-NP conjugates. We used flow cytometry and quantitative fluorescence microscopy of dye-loaded NPs to measure efficiency of binding to ECs in cell culture and in ex-vivo perfusion systems of single vessels and of transplant-declined human kidneys.
Result(s): Ab-Mb-NPs showed up to a 1000-fold enhancement of binding in vitro under flow compared to EDC-NHS conjugated Ab-NPs used in our prior work. This is likely due to a higher number of Ab attached and a better control of Ab orientation leading to high retention of antibody function. In the first transplant-declined human kidneys enrolled in the study, the targeted Ab-Mb-NPs bound specifically to the endothelial cells covering ~40% of the microvessels and ~70% of the glomeruli vasculature area. In addition, the Mb approach is readily adaptable to different NP compositions or conjugation of different Abs of the same species/isotype without re-engineering as is necessary with EDC/NHS conjugation. For example, we easily changed the polymer used to formulate the NPs (poly(lactic acid)-poly(ethylene glycol) [PLA-PEG] or poly(amine-co-ester) [PACE]). We also easily changed the targeted molecule (CD31 or ICAM2) or the species of the targeted molecule (human or pig) using identical conditions for conjugation.
Conclusion(s): Mb-coupled conjugation can both simplify and enhance the use of nanomaterials to target graft ECs, opening opportunities to efficiently deliver therapeutics prior to transplantation
EMBASE:636328407
ISSN: 1600-6143
CID: 5180062