Searched for: in-biosketch:yes
person:landan01
B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV
Scheid, Johannes F; Barnes, Christopher O; Eraslan, Basak; Hudak, Andrew; Keeffe, Jennifer R; Cosimi, Lisa A; Brown, Eric M; Muecksch, Frauke; Weisblum, Yiska; Zhang, Shuting; Delorey, Toni; Woolley, Ann E; Ghantous, Fadi; Park, Sung-Moo; Phillips, Devan; Tusi, Betsabeh; Huey-Tubman, Kathryn E; Cohen, Alexander A; Gnanapragasam, Priyanthi N P; Rzasa, Kara; Hatziioanno, Theodora; Durney, Michael A; Gu, Xiebin; Tada, Takuya; Landau, Nathaniel R; West, Anthony P; Rozenblatt-Rosen, Orit; Seaman, Michael S; Baden, Lindsey R; Graham, Daniel B; Deguine, Jacques; Bieniasz, Paul D; Regev, Aviv; Hung, Deborah; Bjorkman, Pamela J; Xavier, Ramnik J
Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.
PMCID:8064835
PMID: 34015271
ISSN: 1097-4172
CID: 4924212
Convalescent-Phase Sera and Vaccine-Elicited Antibodies Largely Maintain Neutralizing Titer against Global SARS-CoV-2 Variant Spikes
Tada, Takuya; Dcosta, Belinda M; Samanovic, Marie I; Herati, Ramin S; Cornelius, Amber; Zhou, Hao; Vaill, Ada; Kazmierski, Wes; Mulligan, Mark J; Landau, Nathaniel R
The increasing prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with spike protein mutations raises concerns that antibodies elicited by natural infection or vaccination and therapeutic monoclonal antibodies will become less effective. We show that convalescent-phase sera neutralize pseudotyped viruses with the B.1.1.7, B.1.351, B.1.1.248, COH.20G/677H, 20A.EU2, and mink cluster 5 spike proteins with only a minor loss in titer. Similarly, antibodies elicited by Pfizer BNT162b2 vaccination neutralized B.1.351 and B.1.1.248 with only a 3-fold decrease in titer, an effect attributable to E484K. Analysis of the Regeneron monoclonal antibodies REGN10933 and REGN10987 showed that REGN10933 has lost neutralizing activity against the B.1.351 and B.1.1.248 pseudotyped viruses, and the cocktail is 9- to 15-fold decreased in titer. These findings suggest that antibodies elicited by natural infection and by the Pfizer vaccine will maintain protection against the B.1.1.7, B.1.351, and B.1.1.248 variants but that monoclonal antibody therapy may be less effective for patients infected with B.1.351 or B.1.1.248 SARS-CoV-2. IMPORTANCE The rapid evolution of SARS-CoV-2 variants has raised concerns with regard to their potential to escape from vaccine-elicited antibodies and anti-spike protein monoclonal antibodies. We report here on an analysis of sera from recovered patients and vaccinated individuals and on neutralization by Regeneron therapeutic monoclonal antibodies. Overall, the variants were neutralized nearly as well as the wild-type pseudotyped virus. The B.1.351 variant was somewhat resistant to vaccine-elicited antibodies but was still readily neutralized. One of the two Regeneron therapeutic monoclonal antibodies seems to have lost most of its activity against the B.1.351 variant, raising concerns that the combination therapy might be less effective for some patients. The findings should alleviate concerns that vaccines will become ineffective but suggest the importance of continued surveillance for potential new variants.
PMID: 34060334
ISSN: 2150-7511
CID: 4891172
B.1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies [PrePrint]
Zhou, Hao; Dcosta, Belinda M; Samanovic, Marie I; Mulligan, Mark J; Landau, Nathaniel R; Tada, Takuya
DNA sequence analysis recently identified the novel SARS-CoV-2 variant B.1.526 that is spreading at an alarming rate in the New York City area. Two versions of the variant were identified, both with the prevalent D614G mutation in the spike protein together with four novel point mutations and with an E484K or S477N mutation in the receptor binding domain, raising concerns of possible resistance to vaccine-elicited and therapeutic antibodies. We report that convalescent sera and vaccine-elicited antibodies retain full neutralizing titer against the S477N B.1.526 variant and neutralize the E484K version with a modest 3.5-fold decrease in titer as compared to D614G. The E484K version was neutralized with a 12-fold decrease in titer by the REGN10933 monoclonal antibody but the combination cocktail with REGN10987 was fully active. The findings suggest that current vaccines and therapeutic monoclonal antibodies will remain protective against the B.1.526 variants. The findings further support the value of wide-spread vaccination.
PMCID:8010725
PMID: 33791698
ISSN: 2692-8205
CID: 4830962
Antibody isotype diversity against SARS-CoV-2 is associated with differential serum neutralization capacities
Noval, Maria G; Kaczmarek, Maria E; Koide, Akiko; Rodriguez-Rodriguez, Bruno A; Louie, Ping; Tada, Takuya; Hattori, Takamitsu; Panchenko, Tatyana; Romero, Larizbeth A; Teng, Kai Wen; Bazley, Andrew; de Vries, Maren; Samanovic, Marie I; Weiser, Jeffrey N; Aifantis, Ioannis; Cangiarella, Joan; Mulligan, Mark J; Desvignes, Ludovic; Dittmann, Meike; Landau, Nathaniel R; Aguero-Rosenfeld, Maria; Koide, Shohei; Stapleford, Kenneth A
Understanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Recent studies showed that serum from convalescent patients can display variable neutralization capacities. Still, it remains unclear whether there are specific signatures that can be used to predict neutralization. Here, we performed a detailed analysis of sera from a cohort of 101 recovered healthcare workers and we addressed their SARS-CoV-2 antibody response by ELISA against SARS-CoV-2 Spike receptor binding domain and nucleoprotein. Both ELISA methods detected sustained levels of serum IgG against both antigens. Yet, the majority of individuals from our cohort generated antibodies with low neutralization capacity and only 6% showed high neutralizing titers against both authentic SARS-CoV-2 virus and the Spike pseudotyped virus. Interestingly, higher neutralizing sera correlate with detection of -IgG, IgM and IgA antibodies against both antigens, while individuals with positive IgG alone showed poor neutralization response. These results suggest that having a broader repertoire of antibodies may contribute to more potent SARS-CoV-2 neutralization. Altogether, our work provides a cross sectional snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides preliminary evidence that possessing multiple antibody isotypes can play an important role in predicting SARS-CoV-2 neutralization.
PMCID:7946906
PMID: 33692390
ISSN: 2045-2322
CID: 4809372
Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies [PrePrint]
Tada, Takuya; Dcosta, Belinda M; Samanovic-Golden, Marie; Herati, Ramin S; Cornelius, Amber; Mulligan, Mark J; Landau, Nathaniel R
The increasing prevalence of SARS-CoV-2 variants with mutations in the spike protein has raised concerns that recovered individuals may not be protected from reinfection and that current vaccines will become less effective. The B.1.1.7 isolate identified in the United Kingdom and B.1.351 isolate identified in the Republic of South Africa encode spike proteins with multiple mutations in the S1 and S2 subunits. In addition, variants have been identified in Columbus, Ohio (COH.20G/677H), Europe (20A.EU2) and in domesticated minks. Analysis by antibody neutralization of pseudotyped viruses showed that convalescent sera from patients infected prior to the emergence of the variant viruses neutralized viruses with the B.1.1.7, B.1.351, COH.20G/677H Columbus Ohio, 20A.EU2 Europe and mink cluster 5 spike proteins with only a minor decrease in titer compared to that of the earlier D614G spike protein. Serum specimens from individuals vaccinated with the BNT162b2 mRNA vaccine neutralized D614G virus with titers that were on average 7-fold greater than convalescent sera. Vaccine elicited antibodies neutralized virus with the B.1.1.7 spike protein with titers similar to D614G virus and neutralized virus with the B.1.351 spike with, on average, a 3-fold reduction in titer (1:500), a titer that was still higher than the average titer with which convalescent sera neutralized D614G (1:139). The reduction in titer was attributable to the E484K mutation in the RBD. The B.1.1.7 and B.1.351 viruses were not more infectious than D614G on ACE2.293T cells in vitro but N501Y, an ACE2 contacting residue present in the B.1.1.7, B.1.351 and COH.20G/677H spike proteins caused higher affinity binding to ACE2, likely contributing to their increased transmissibility. These findings suggest that antibodies elicited by primary infection and by the BNT162b2 mRNA vaccine are likely to maintain protective efficacy against B.1.1.7 and most other variants but that the partial resistance of virus with the B.1.351 spike protein could render some individuals less well protected, supporting a rationale for the development of modified vaccines containing E484K.
PMCID:7872356
PMID: 33564768
ISSN: 2692-8205
CID: 4779712
Honing the T cell response to HIV: Turning off the noise
Landau, Nathaniel R
PMCID:7847944
PMID: 33516065
ISSN: 2352-3964
CID: 4807422
An ACE2 Microbody Containing a Single Immunoglobulin Fc Domain Is a Potent Inhibitor of SARS-CoV-2
Tada, Takuya; Fan, Chen; Chen, Jennifer S; Kaur, Ramanjit; Stapleford, Kenneth A; Gristick, Harry; Dcosta, Belinda M; Wilen, Craig B; Nimigean, Crina M; Landau, Nathaniel R
Soluble forms of angiotensin-converting enzyme 2 (ACE2) have recently been shown to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We report on an improved soluble ACE2, termed a "microbody," in which the ACE2 ectodomain is fused to Fc domain 3 of the immunoglobulin (Ig) heavy chain. The protein is smaller than previously described ACE2-Ig Fc fusion proteins and contains an H345A mutation in the ACE2 catalytic active site that inactivates the enzyme without reducing its affinity for the SARS-CoV-2 spike. The disulfide-bonded ACE2 microbody protein inhibits entry of SARS-CoV-2 spike protein pseudotyped virus and replication of live SARS-CoV-2 in vitro and in a mouse model. Its potency is 10-fold higher than soluble ACE2, and it can act after virus bound to the cell. The microbody inhibits the entry of β coronaviruses and virus with the variant D614G spike. The ACE2 microbody may be a valuable therapeutic for coronavirus disease 2019 (COVID-19) that is active against viral variants and future coronaviruses.
PMCID:7705358
PMID: 33326798
ISSN: 2211-1247
CID: 4735212
The ACE2-binding interface of SARS-CoV-2 Spike inherently deflects immune recognition
Hattori, Takamitsu; Koide, Akiko; Noval, Maria G; Panchenko, Tatyana; Romero, Larizbeth A; Wen Teng, Kai; Tada, Takuya; Landau, Nathaniel R; Stapleford, Kenneth A; Koide, Shohei
The COVID-19 pandemic remains a global threat, and host immunity remains the main mechanism of protection against the disease. The spike protein on the surface of SARS-CoV-2 is a major antigen and its engagement with human ACE2 receptor plays an essential role in viral entry into host cells. Consequently, antibodies targeting the ACE2-interacting surface (ACE2IS) located in the receptor-binding domain (RBD) of the spike protein can neutralize the virus. However, the understanding of immune responses to SARS-CoV-2 is still limited, and it is unclear how the virus protects this surface from recognition by antibodies. Here, we designed an RBD mutant that disrupts the ACE2IS and used it to characterize the prevalence of antibodies directed to the ACE2IS from convalescent sera of 94 COVID19-positive patients. We found that only a small fraction of RBD-binding antibodies targeted the ACE2IS. To assess the immunogenicity of different parts of the spike protein, we performed in vitro antibody selection for the spike and the RBD proteins using both unbiased and biased selection strategies. Intriguingly, unbiased selection yielded antibodies that predominantly targeted regions outside the ACE2IS, whereas ACE2IS-binding antibodies were readily identified from biased selection designed to enrich such antibodies. Furthermore, antibodies from an unbiased selection using the RBD preferentially bound to the surfaces that are inaccessible in the context of whole spike protein. These results suggest that the ACE2IS has evolved less immunogenic than the other regions of the spike protein, which has important implications in the development of vaccines against SARS-CoV-2.
PMID: 33310017
ISSN: 1089-8638
CID: 4717412
The ACE2-binding interface of SARS-CoV-2 Spike inherently deflects immune recognition [PrePrint]
Hattori, Takamitsu; Koide, Akiko; Panchenko, Tatyana; Romero, Larizbeth A; Teng, Kai Wen; Tada, Takuya; Landau, Nathaniel R; Koide, Shohei
The COVID-19 pandemic remains a global threat, and host immunity remains the main mechanism of protection against the disease. The spike protein on the surface of SARS-CoV-2 is a major antigen and its engagement with human ACE2 receptor plays an essential role in viral entry into host cells. Consequently, antibodies targeting the ACE2-interacting surface (ACE2IS) located in the receptor-binding domain (RBD) of the spike protein can neutralize the virus. However, the understanding of immune responses to SARS-CoV-2 is still limited, and it is unclear how the virus protects this surface from recognition by antibodies. Here, we designed an RBD mutant that disrupts the ACE2IS and used it to characterize the prevalence of antibodies directed to the ACE2IS from convalescent sera of 94 COVID19-positive patients. We found that only a small fraction of RBD-binding antibodies targeted the ACE2IS. To assess the immunogenicity of different parts of the spike protein, we performed in vitro antibody selection for the spike and the RBD proteins using both unbiased and biased selection strategies. Intriguingly, unbiased selection yielded antibodies that predominantly targeted regions outside the ACE2IS, whereas ACE2IS-binding antibodies were readily identified from biased selection designed to enrich such antibodies. Furthermore, antibodies from an unbiased selection using the RBD preferentially bound to the surfaces that are inaccessible in the context of whole spike protein. These results suggest that the ACE2IS has evolved less immunogenic than the other regions of the spike protein, which has important implications in the development of vaccines against SARS-CoV-2.
PMCID:7654858
PMID: 33173869
ISSN: 2692-8205
CID: 4665192
Lentiviral-Vector-Based Dendritic Cell Vaccine Synergizes with Checkpoint Blockade to Clear Chronic Viral Infection
Norton, Thomas D; Tada, Takuya; Leibowitz, Rebecca; van der Heide, Verena; Homann, Dirk; Landau, Nathaniel R
Dendritic cell vaccines are a promising strategy for the treatment of cancer and infectious diseases but have met with mixed success. We report on a lentiviral vector-based dendritic cell vaccine strategy that generates a cluster of differentiation 8 (CD8) T cell response that is much stronger than that achieved by standard peptide-pulsing approaches. The strategy was tested in the mouse lymphocytic choriomeningitis virus (LCMV) model. Bone marrow-derived dendritic cells from SAMHD1 knockout mice were transduced with a lentiviral vector expressing the GP33 major-histocompatibility-complex (MHC)-class-I-restricted peptide epitope and CD40 ligand (CD40L) and injected into wild-type mice. The mice were highly protected against acute and chronic variant CL-13 LCMVs, resulting in a 100-fold greater decrease than that achieved with peptide epitope-pulsed dendritic cells. Inclusion of an MHC-class-II-restricted epitope in the lentiviral vector further increased the CD8 T cell response and resulted in antigen-specific CD8 T cells that exhibited a phenotype associated with functional cytotoxic T cells. The vaccination synergized with checkpoint blockade to reduce the viral load of mice chronically infected with CL-13 to an undetectable level. The strategy improves upon current dendritic cell vaccine strategies; is applicable to the treatment of disease, including AIDS and cancer; and supports the utility of Vpx-containing vectors.
PMID: 32497512
ISSN: 1525-0024
CID: 4481032