Searched for: in-biosketch:yes
person:lees40
Fused Lasso Regression for Identifying Differential Correlations in Brain Connectome Graphs
Yu, Donghyeon; Lee, Sang Han; Lim, Johan; Xiao, Guanghua; Craddock, R Cameron; Biswal, Bharat B
In this paper, we propose a procedure to find differential edges between two graphs from high-dimensional data. We estimate two matrices of partial correlations and their differences by solving a penalized regression problem. We assume sparsity only on differences between two graphs, not graphs themselves. Thus, we impose an â„“ 2 penalty on partial correlations and an â„“ 1 penalty on their differences in the penalized regression problem. We apply the proposed procedure to finding differential functional connectivity between healthy individuals and Alzheimer's disease patients.
PMCID:8356776
PMID: 34386148
ISSN: 1932-1864
CID: 5068862
CA1 pyramidal neuron gene expression mosaics in the Ts65Dn murine model of Down syndrome and Alzheimer's disease following maternal choline supplementation (MCS)
Alldred, Melissa J; Chao, Helen M; Lee, Sang Han; Beilin, Judah; Powers, Brian E; Petkova, Eva; Strupp, Barbara J; Ginsberg, Stephen D
Although there are changes in gene expression and alterations in neuronal density and afferent inputs in the forebrain of trisomic mouse models of Down syndrome (DS) and Alzheimer's disease (AD), there is a lack of systematic assessments of gene expression and encoded proteins within individual vulnerable cell populations, precluding translational investigations at the molecular and cellular level. Further, no effective treatment exists to combat intellectual disability and basal forebrain cholinergic neurodegeneration seen in DS. To further our understanding of gene expression changes before and following cholinergic degeneration in a well-established mouse model of DS/AD, the Ts65Dn mouse, we assessed RNA expression levels from CA1 pyramidal neurons at two adult ages (∼6 months of age and ∼11 months of age) in both Ts65Dn and their normal disomic (2N) littermates. We further examined a viable therapeutic, maternal choline supplementation (MCS), which has been previously shown to lessen dysfunction in spatial cognition and attention, and have protective effects on the survival of basal forebrain cholinergic neurons (BFCNs) in the Ts65Dn mouse model. Results indicate that MCS normalized expression of several genes in key gene ontology categories, including synaptic plasticity, calcium signaling, and AD-associated neurodegeneration related to amyloid-beta peptide (Aβ) clearance. Specifically, normalized expression levels were found for endothelin converting enzyme-2 (Ece2), insulin degrading enzyme (Ide), Dyrk1a, and calcium/calmodulin-dependent protein kinase II (Camk2a), among other relevant genes. Single population expression profiling of vulnerable CA1 pyramidal neurons indicates that MCS is a viable therapeutic for long-term reprogramming of key transcripts involved in neuronal signaling that are dysregulated in the trisomic mouse brain which have translational potential for DS and AD.
PMCID:5874173
PMID: 29394516
ISSN: 1098-1063
CID: 2933942
Expression profiling suggests microglial impairment in HIV neuropathogenesis
Ginsberg, Stephen D; Alldred, Melissa J; Gunnam, Satya M; Schiroli, Consuelo; Lee, Sang Han; Morgello, Susan; Fischer, Tracy
OBJECTIVE:CD16+ /CD163+ macrophages (MΦ)s and microglia accumulate in the brains of patients with HIV encephalitis (HIVE), a neuropathological correlate of the most severe form of HIV-associated neurocognitive disorders (HAND), HIV-associated dementia (HIV-D). Recently, we found that some parenchymal microglia in brain of HIV+ subjects without encephalitis (HIV/noE) but with varying degrees of neurocognitive impairment express CD16 and CD163, even in the absence of detectable virus production. To further our understanding of microglial activation in HIV, we investigated expression of specific genes by profiling parenchymal microglia from archival brain tissue of patients with HIVE, HIV/noE, and HIV- controls. METHODS:Single-population microarray analyses were performed on ∼2,500 laser capture microdissected CD163+ , CD16+ or CD68+ MΦs/microglia per case, using terminal continuation (TC) RNA amplification and a custom-designed array platform. RESULTS:Several classes of microglial transcripts in HIVE and HIV/noE, were altered, relative to HIV- subjects, including factors related to cell stress, immune activation, and apoptosis. Additionally, several neurotrophic factors are reduced in HIV infection, suggesting an additional mechanism of neuropathogenesis. The majority of transcripts altered in HIVE displayed intermediate changes in HIV/noE. INTERPRETATION/CONCLUSIONS:Our results support the notion that microglia contribute to the maintenance of brain homeostasis and their potential loss of function in the context of chronic inflammation contributes to neuropathogenesis. Furthermore, they indicate the utility of profiling MΦs/microglia to increase our understanding of microglia function, as well as ascertain alterations in specific pathways, genes, and, ostensibly, encoded proteins that may be amenable to targeted treatment modalities in diseases affecting the brain.
PMCID:5822676
PMID: 29369399
ISSN: 1531-8249
CID: 2929212
Magnetic resonance imaging-based measures predictive of short-term surgical outcome in patients with Chiari malformation Type I: a pilot study
Alperin, Noam; Loftus, James Ryan; Bagci, Ahmet M; Lee, Sang H; Oliu, Carlos J; Shah, Ashish H; Green, Barth A
OBJECTIVE This study identifies quantitative imaging-based measures in patients with Chiari malformation Type I (CM-I) that are associated with positive outcomes after suboccipital decompression with duraplasty. METHODS Fifteen patients in whom CM-I was newly diagnosed underwent MRI preoperatively and 3 months postoperatively. More than 20 previously described morphological and physiological parameters were derived to assess quantitatively the impact of surgery. Postsurgical clinical outcomes were assessed in 2 ways, based on resolution of the patient's chief complaint and using a modified Chicago Chiari Outcome Scale (CCOS). Statistical analyses were performed to identify measures that were different between the unfavorable- and favorable-outcome cohorts. Multivariate analysis was used to identify the strongest predictors of outcome. RESULTS The strongest physiological parameter predictive of outcome was the preoperative maximal cord displacement in the upper cervical region during the cardiac cycle, which was significantly larger in the favorable-outcome subcohorts for both outcome types (p < 0.05). Several hydrodynamic measures revealed significantly larger preoperative-to-postoperative changes in the favorable-outcome subcohort. Predictor sets for the chief-complaint classification included the cord displacement, percent venous drainage through the jugular veins, and normalized cerebral blood flow with 93.3% accuracy. Maximal cord displacement combined with intracranial volume change predicted outcome based on the modified CCOS classification with similar accuracy. CONCLUSIONS Tested physiological measures were stronger predictors of outcome than the morphological measures in patients with CM-I. Maximal cord displacement and intracranial volume change during the cardiac cycle together with a measure that reflects the cerebral venous drainage pathway emerged as likely predictors of decompression outcome in patients with CM-I.
PMID: 27494782
ISSN: 1547-5646
CID: 5761532
What can the study of first impressions tell us about attitudinal ambivalence and paranoia in schizophrenia?
Tremeau, Fabien; Antonius, Daniel; Todorov, Alexander; Rebani, Yasmina; Ferrari, Kelsey; Lee, Sang Han; Calderone, Daniel; Nolan, Karen A; Butler, Pamela; Malaspina, Dolores; Javitt, Daniel C
Although social cognition deficits have been associated with schizophrenia, social trait judgments - or first impressions - have rarely been studied. These first impressions, formed immediately after looking at a person's face, have significant social consequences. Eighty-one individuals with schizophrenia or schizoaffective disorder and 62 control subjects rated 30 neutral faces on 10 positive or negative traits: attractive, mean, trustworthy, intelligent, dominant, fun, sociable, aggressive, emotionally stable and weird. Compared to controls, patients gave higher ratings for positive traits as well as for negative traits. Patients also demonstrated more ambivalence in their ratings. Patients who were exhibiting paranoid symptoms assigned higher intensity ratings for positive social traits than non-paranoid patients. Social trait ratings were negatively correlated with everyday problem solving skills in patients. Although patients appeared to form impressions of others in a manner similar to controls, they tended to assign higher scores for both positive and negative traits. This may help explain the social deficits observed in schizophrenia: first impressions of higher degree are harder to correct, and ambivalent attitudes may impair the motivation to interact with others. Consistent with research on paranoia and self-esteem, actively-paranoid patients' positive social traits judgments were of higher intensity than non-paranoid patients'.
PMID: 27086216
ISSN: 1872-7123
CID: 2079282
Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-beta Alterations in a Monkey Model of Type 1 Diabetes
Morales-Corraliza, Jose; Wong, Harrison; Mazzella, Matthew J; Che, Shaoli; Lee, Sang Han; Petkova, Eva; Wagner, Janice D; Hemby, Scott E; Ginsberg, Stephen D; Mathews, Paul M
Epidemiological findings suggest that diabetic individuals are at a greater risk for developing Alzheimer's disease (AD). To examine the mechanisms by which diabetes mellitus (DM) may contribute to AD pathology in humans, we examined brain tissue from streptozotocin-treated type 1 diabetic adult male vervet monkeys receiving twice-daily exogenous insulin injections for 8-20 weeks. We found greater inhibitory phosphorylation of insulin receptor substrate 1 in each brain region examined of the diabetic monkeys when compared with controls, consistent with a pattern of brain insulin resistance that is similar to that reported in the human AD brain. Additionally, a widespread increase in phosphorylated tau was seen, including brain areas vulnerable in AD, as well as relatively spared structures, such as the cerebellum. An increase in active ERK1/2 was also detected, consistent with DM leading to changes in tau-kinase activity broadly within the brain. In contrast to these widespread changes, we found an increase in soluble amyloid-beta (Abeta) levels that was restricted to the temporal lobe, with the greatest increase seen in the hippocampus. Consistent with this localized Abeta increase, a hippocampus-restricted decrease in the protein and mRNA for the Abeta-degrading enzyme neprilysin (NEP) was found, whereas various Abeta-clearing and -degrading proteins were unchanged. Thus, we document multiple biochemical changes in the insulin-controlled DM monkey brain that can link DM with the risk of developing AD, including dysregulation of the insulin-signaling pathway, changes in tau phosphorylation, and a decrease in NEP expression in the hippocampus that is coupled with a localized increase in Abeta. SIGNIFICANCE STATEMENT: Given that diabetes mellitus (DM) appears to increase the risk of developing Alzheimer's disease (AD), understanding the mechanisms by which DM promotes AD is important. We report that DM in a nonhuman primate brain leads to changes in the levels or posttranslational processing of proteins central to AD pathobiology, including tau, amyloid-beta (Abeta), and the Abeta-degrading protease neprilysin. Additional evidence from this model suggests that alterations in brain insulin signaling occurred that are reminiscent of insulin signaling pathway changes seen in human AD. Thus, in anin vivomodel highly relevant to humans, we show multiple alterations in the brain resulting from DM that are mechanistically linked to AD risk.
PMCID:4829649
PMID: 27076423
ISSN: 1529-2401
CID: 2077582
Predicting progression from mild cognitive impairment to Alzheimer's disease using longitudinal callosal atrophy
Lee, Sang Han; Bachman, Alvin H; Yu, Donghyeon; Lim, Johan; Ardekani, Babak A
INTRODUCTION: We investigate whether longitudinal callosal atrophy could predict conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD). METHODS: Longitudinal (baseline + 1-year follow-up) MRI scans of 132 MCI subjects from the Alzheimer's Disease Neuroimaging Initiative were used. A total of 54 subjects did not convert to AD over an average (+/-SD) follow-up of 5.46 (+/-1.63) years, whereas 78 converted to AD with an average conversion time of 2.56 (+/-1.65) years. Annual change in the corpus callosum thickness profile was calculated from the baseline and 1-year follow-up MRI. A logistic regression model with fused lasso regularization for prediction was applied to the annual changes. RESULTS: We found a sex difference. The accuracy of prediction was 84% in females and 61% in males. The discriminating regions of corpus callosum differed between sexes. In females, the genu, rostrum, and posterior body had predictive power, whereas the genu and splenium were relevant in males. DISCUSSION: Annual callosal atrophy predicts MCI-to-AD conversion in females more accurately than in males.
PMCID:4879655
PMID: 27239537
ISSN: 2352-8729
CID: 2124742
Implicit emotion perception in schizophrenia
Tremeau, Fabien; Antonius, Daniel; Todorov, Alexander; Rebani, Yasmina; Ferrari, Kelsey; Lee, Sang Han; Calderone, Daniel; Nolan, Karen A; Butler, Pamela; Malaspina, Dolores; Javitt, Daniel C
Explicit but not implicit facial emotion perception has been shown to be impaired in schizophrenia. In this study, we used newly developed technology in social neuroscience to examine implicit emotion processing. It has been shown that when people look at faces, they automatically infer social traits, and these trait judgments rely heavily on facial features and subtle emotion expressions even with neutral faces. Eighty-one individuals with schizophrenia or schizoaffective disorder and 62 control subjects completed a computer task with 30 well-characterized neutral faces. They rated each face on 10 trait judgments: attractive, mean, trustworthy, intelligent, dominant, fun, sociable, aggressive, emotionally stable and weird. The degree to which trait ratings were predicted by objectively-measured subtle emotion expressions served as a measure of implicit emotion processing. Explicit emotion recognition was also examined. Trait ratings were significantly predicted by subtle facial emotional expressions in controls and patients. However, impairment in the implicit emotion perception of fear, happiness, anger and surprise was found in patients. Moreover, these deficits were associated with poorer everyday problem-solving skills and were relatively independent of explicit emotion recognition. Implicit emotion processing is impaired in patients with schizophrenia or schizoaffective disorder. Deficits in implicit and explicit emotion perception independently contribute to the patients' poor daily life skills. More research is needed to fully understand the role of implicit and explicit processes in the functional deficits of patients, in order to develop targeted and useful remediation interventions.
PMID: 26473695
ISSN: 1879-1379
CID: 1803782
Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer's disease (AD)
Alldred, Melissa J; Lee, Sang Han; Petkova, Eva; Ginsberg, Stephen D
Down syndrome (DS) is caused by the triplication of human chromosome 21 (HSA21) and is the most common genetic cause of intellectual disability, with individuals having deficits in cognitive function including hippocampal learning and memory and neurodegeneration of cholinergic basal forebrain neurons, a pathological hallmark of Alzheimer's disease (AD). To date, the molecular underpinnings driving this pathology have not been elucidated. The Ts65Dn mouse is a segmental trisomy model of DS and like DS/AD pathology, displays age-related cognitive dysfunction and basal forebrain cholinergic neuron (BFCN) degeneration. To determine molecular and cellular changes important for elucidating mechanisms of neurodegeneration in DS/AD pathology, expression profiling studies were performed. Molecular fingerprinting of homogeneous populations of Cornu Ammonis 1 (CA1) pyramidal neurons was performed via laser capture microdissection followed by Terminal Continuation RNA amplification combined with custom-designed microarray analysis and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting. Significant alterations were observed within CA1 pyramidal neurons of aged Ts65Dn mice compared to normal disomic (2N) littermates, notably in excitatory and inhibitory neurotransmission receptor families and neurotrophins, including brain-derived neurotrophic factor as well as several cognate neurotrophin receptors. Examining gene and protein expression levels after the onset of BFCN degeneration elucidated transcriptional and translational changes in neurons within a vulnerable circuit that may cause the AD-like pathology seen in DS as these individuals age, and provide rational targets for therapeutic interventions.
PMCID:4297601
PMID: 25031177
ISSN: 1863-2653
CID: 1071192
Imaging-Based Features of Headaches in Chiari Malformation Type I
Alperin, Noam; Loftus, James R; Oliu, Carlos J; Bagci, Ahmet M; Lee, Sang H; Ertl-Wagner, Birgit; Sekula, Raymond; Lichtor, Terry; Green, Barth A
BACKGROUND:Suboccipital cough-induced headaches are considered a hallmark symptom of Chiari malformation type I (CMI). However, non--Valsalva-related suboccipital headaches and headaches in other locations are also common in CMI. The diagnostic significance and the underlying factors associated with these different headaches types are not well understood. OBJECTIVE:To compare cranial morphology and hydrodynamics in 3 types of headaches in CMI to better understand the pathophysiological basis for the different headache characteristics. METHODS:Twenty-two cranial physiological and morphological measures were obtained with specialized magnetic resonance imaging scans from 63 symptomatic pretreated CMI patients, 40 with suboccipital headaches induced by Valsalva maneuvers (34 women; age, 36 ± 10 years), 15 with non--Valsalva-related suboccipital headaches (10 women; age, 33 ± 9 years), 8 with nonsuboccipital non--Valsalva-induced headaches (8 women; age, 39 ± 13 years), and 37 control subjects (24 women; age, 36 ± 12 years). Group differences were identified with the use of the 2-tailed Student t test. RESULTS:Posterior cranial fossa markers of CMI were similar among the 3 headache subtypes. However, the Valsalva-related suboccipital headaches cohort demonstrated a significantly lower intracranial compliance index than the non--Valsalva-related suboccipital headaches cohort (7.5 ± 3.4 vs 10.9 ± 4.9), lower intracranial volume change during the cardiac cycle (0.48 ± 0.19 vs 0.61 ± 0.16 mL), and higher magnetic resonance imaging--derived intracranial pressure (11.1 ± 4.3 vs 7.7 ± 2.8 mm Hg; P = .02). The Valsalva-related suboccipital headaches cohort had smaller intracranial and lateral ventricular volumes compared with the healthy cohort. The non--Valsalva-related suboccipital headaches cohort had reduced venous drainage through the jugular veins. CONCLUSION/CONCLUSIONS:Valsalva-induced worsening of occipital headaches appears to be related to a small intracranial volume rather than the smaller posterior cranial fossa. This explains the reduced intracranial compliance and corresponding higher pressure measured in CMI patients with headaches affected by Valsalva maneuvers.
PMCID:4854289
PMID: 25812067
ISSN: 1524-4040
CID: 5761522