Searched for: in-biosketch:yes
person:littmd01
c-MAF-dependent perivascular macrophages regulate diet-induced metabolic syndrome
Moura Silva, Hernandez; Kitoko, Jamil Zola; Queiroz, Camila Pereira; Kroehling, Lina; Matheis, Fanny; Yang, Katharine Lu; Reis, Bernardo S; Ren-Fielding, Christine; Littman, Dan R; Bozza, Marcelo Torres; Mucida, Daniel; Lafaille, Juan J
[Figure: see text].
PMID: 34597123
ISSN: 2470-9468
CID: 5061682
Redundant cytokine requirement for intestinal microbiota-induced Th17 cell differentiation in draining lymph nodes
Sano, Teruyuki; Kageyama, Takahiro; Fang, Victoria; Kedmi, Ranit; Martinez, Carlos Serafin; Talbot, Jhimmy; Chen, Alessandra; Cabrera, Ivan; Gorshko, Oleksandra; Kurakake, Reina; Yang, Yi; Ng, Charles; Schwab, Susan R; Littman, Dan R
Differentiation of intestinal T helper 17 (Th17) cells, which contribute to mucosal barrier protection from invasive pathogens, is dependent on colonization with distinct commensal bacteria. Segmented filamentous bacteria (SFB) are sufficient to support Th17 cell differentiation in mouse, but the molecular and cellular requirements for this process remain incompletely characterized. Here, we show that intestine-draining mesenteric lymph nodes (MLNs), not intestine proper, are the dominant site of SFB-induced intestinal Th17 cell differentiation. Subsequent migration of these cells to the intestinal lamina propria is dependent on their upregulation of integrin β7. Stat3-dependent induction of RORγt, the Th17 cell-specifying transcription factor, largely depends on IL-6, but signaling through the receptors for IL-21 and IL-23 can compensate for absence of IL-6 to promote SFB-directed Th17 cell differentiation. These results indicate that redundant cytokine signals guide commensal microbe-dependent Th17 cell differentiation in the MLNs and accumulation of the cells in the lamina propria.
PMID: 34433045
ISSN: 2211-1247
CID: 4989122
Lung eosinophils elicited during allergic and acute aspergillosis express RORγt and IL-23R but do not require IL-23 for IL-17 production
Yadav, Bhawna; Specht, Charles A; Lee, Chrono K; Pokrovskii, Maria; Huh, Jun R; Littman, Dan R; Levitz, Stuart M
Exposure to the mold, Aspergillus, is ubiquitous and generally has no adverse consequences in immunocompetent persons. However, invasive and allergic aspergillosis can develop in immunocompromised and atopic individuals, respectively. Previously, we demonstrated that mouse lung eosinophils produce IL-17 in response to stimulation by live conidia and antigens of A. fumigatus. Here, we utilized murine models of allergic and acute pulmonary aspergillosis to determine the association of IL-23, IL-23R and RORγt with eosinophil IL-17 expression. Following A. fumigatus stimulation, a population of lung eosinophils expressed RORγt, the master transcription factor for IL-17 regulation. Eosinophil RORγt expression was demonstrated by flow cytometry, confocal microscopy, western blotting and an mCherry reporter mouse. Both nuclear and cytoplasmic localization of RORγt in eosinophils were observed, although the former predominated. A population of lung eosinophils also expressed IL-23R. While expression of IL-23R was positively correlated with expression of RORγt, expression of RORγt and IL-17 was similar when comparing lung eosinophils from A. fumigatus-challenged wild-type and IL-23p19-/- mice. Thus, in allergic and acute models of pulmonary aspergillosis, lung eosinophils express IL-17, RORγt and IL-23R. However, IL-23 is dispensable for production of IL-17 and RORγt.
PMCID:8437264
PMID: 34464425
ISSN: 1553-7374
CID: 5065272
Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation
Venzon, Mericien; Bernard-Raichon, Lucie; Klein, Jon; Axelrad, Jordan; Hussey, Grant; Sullivan, Alexis; Casanovas-Massana, Arnau; Noval, Maria; Valero-Jimenez, Ana; Gago, Juan; Wilder, Evan; Team, Yale Impact Research; Iwasaki, Akiko; Thorpe, Lorna; Littman, Dan; Dittmann, Meike; Stapleford, Kenneth; Shopsin, Bo; Torres, Victor; Ko, Albert; Cadwell, Ken; Schluter, Jonas
The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate that the gut microbiome is directly affected by SARS-CoV-2 infection in a dose-dependent manner in a mouse model, causally linking viral infection and gut microbiome dysbiosis. Comparison with stool samples collected from 97 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients suggest that bacteria translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID 19.
PMCID:8328072
PMID: 34341786
ISSN: n/a
CID: 5080792
SPNS2 enables TÂ cell egress from lymph nodes during an immune response
Okuniewska, Martyna; Fang, Victoria; Baeyens, Audrey; Raghavan, Varsha; Lee, June-Yong; Littman, Dan R; Schwab, Susan R
T cell expression of sphingosine 1-phosphate (S1P) receptor 1 (S1PR1) enables TÂ cell exit from lymph nodes (LNs) into lymph, while endothelial S1PR1 expression regulates vascular permeability. Drugs targeting S1PR1 treat autoimmune disease by trapping pathogenic TÂ cells within LNs, but they have adverse cardiovascular side effects. In homeostasis, the transporter SPNS2 supplies lymph S1P and enables TÂ cell exit, while the transporter MFSD2B supplies most blood S1P and supports vascular function. It is unknown whether SPNS2 remains necessary to supply lymph S1P during an immune response, or whether in inflammation other compensatory transporters are upregulated. Here, using a model of dermal inflammation, we demonstrate that SPNS2 supplies the S1P that guides TÂ cells out of LNs with an ongoing immune response. Furthermore, deletion of Spns2 is protective in a mouse model of multiple sclerosis. These results support the therapeutic potential of SPNS2 inhibitors to achieve spatially specific modulation of S1P signaling.
PMCID:8351797
PMID: 34260944
ISSN: 2211-1247
CID: 4965312
Immune cell control of nutrient absorption [Comment]
Talbot, Jhimmy; Littman, Dan R
PMID: 33737473
ISSN: 1095-9203
CID: 4836132
Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease
Lee, June-Yong; Hall, Jason A; Kroehling, Lina; Wu, Lin; Najar, Tariq; Nguyen, Henry H; Lin, Woan-Yu; Yeung, Stephen T; Silva, Hernandez Moura; Li, Dayi; Hine, Ashley; Loke, P'ng; Hudesman, David; Martin, Jerome C; Kenigsberg, Ephraim; Merad, Miriam; Khanna, Kamal M; Littman, Dan R
PMID: 33357400
ISSN: 1097-4172
CID: 4731172
Niche-Selective Inhibition of Pathogenic Th17 Cells by Targeting Metabolic Redundancy
Wu, Lin; Hollinshead, Kate E R; Hao, Yuhan; Au, Christy; Kroehling, Lina; Ng, Charles; Lin, Woan-Yu; Li, Dayi; Silva, Hernandez Moura; Shin, Jong; Lafaille, Juan J; Possemato, Richard; Pacold, Michael E; Papagiannakopoulos, Thales; Kimmelman, Alec C; Satija, Rahul; Littman, Dan R
Targeting glycolysis has been considered therapeutically intractable owing to its essential housekeeping role. However, the context-dependent requirement for individual glycolytic steps has not been fully explored. We show that CRISPR-mediated targeting of glycolysis in TÂ cells in mice results in global loss of Th17 cells, whereas deficiency of the glycolytic enzyme glucose phosphate isomerase (Gpi1) selectively eliminates inflammatory encephalitogenic and colitogenic Th17 cells, without substantially affecting homeostatic microbiota-specific Th17 cells. In homeostatic Th17 cells, partial blockade of glycolysis upon Gpi1 inactivation was compensated by pentose phosphate pathway flux and increased mitochondrial respiration. In contrast, inflammatory Th17 cells experience a hypoxic microenvironment known to limit mitochondrial respiration, which is incompatible with loss of Gpi1. Our study suggests that inhibiting glycolysis by targeting Gpi1 could be an effective therapeutic strategy with minimum toxicity for Th17-mediated autoimmune diseases, and, more generally, that metabolic redundancies can be exploited for selective targeting of disease processes.
PMID: 32615085
ISSN: 1097-4172
CID: 4504552
Deciphering the regulatory landscape of fetal and adult γδ T-cell development at single-cell resolution
Pokrovskii, Maria; Herman, Josip S; Naik, Shruti; Sock, Elisabeth; Zeis, Patrice; Lausch, Ute; Wegner, Michael; Tanriver, Yakup; Littman, Dan R; Grün, Dominic
γδ T cells with distinct properties develop in the embryonic and adult thymus and have been identified as critical players in a broad range of infections, antitumor surveillance, autoimmune diseases, and tissue homeostasis. Despite their potential value for immunotherapy, differentiation of γδ T cells in the thymus is incompletely understood. Here, we establish a high-resolution map of γδ T-cell differentiation from the fetal and adult thymus using single-cell RNA sequencing. We reveal novel sub-types of immature and mature γδ T cells and identify an unpolarized thymic population which is expanded in the blood and lymph nodes. Our detailed comparative analysis reveals remarkable similarities between the gene networks active during fetal and adult γδ T-cell differentiation. By performing a combined single-cell analysis of Sox13, Maf, and Rorc knockout mice, we demonstrate sequential activation of these factors during IL-17-producing γδ T-cell (γδT17) differentiation. These findings substantially expand our understanding of γδ T-cell ontogeny in fetal and adult life. Our experimental and computational strategy provides a blueprint for comparing immune cell differentiation across developmental stages.
PMID: 32627520
ISSN: 1460-2075
CID: 4510912
BCR selection and affinity maturation in Peyer's patch germinal centres
Chen, Huan; Zhang, Yuxiang; Ye, Adam Yongxin; Du, Zhou; Xu, Mo; Lee, Cheng-Sheng; Hwang, Joyce K; Kyritsis, Nia; Ba, Zhaoqing; Neuberg, Donna; Littman, Dan R; Alt, Frederick W
The antigen-binding variable regions of the BÂ cell receptor (BCR) and of antibodies are encoded by exons that are assembled in developing BÂ cells by V(D)J recombination1. The BCR repertoires of primary BÂ cells are vast owing to mechanisms that create diversity at the junctions of V(D)J gene segments that contribute to complementarity-determining region 3 (CDR3), the region that binds antigen1. Primary BÂ cells undergo antigen-driven BCR affinity maturation through somatic hypermutation and cellular selection in germinal centres (GCs)2,3. Although most GCs are transient3, those in intestinal Peyer's patches (PPs)-which depend on the gut microbiota-are chronic4, and little is known about their BCR repertoires or patterns of somatic hypermutation. Here, using a high-throughput assay that analyses both V(D)J segment usage and somatic hypermutation profiles, we elucidate physiological BCR repertoires in mouse PP GCs. PP GCs from different mice expand public BCR clonotypes (clonotypes that are shared between many mice) that often have canonical CDR3s in the immunoglobulin heavy chain that, owing to junctional biases during V(D)J recombination, appear much more frequently than predicted in naive BÂ cell repertoires. Some public clonotypes are dependent on the gut microbiota and encode antibodies that are reactive to bacterial glycans, whereas others are independent of gut bacteria. Transfer of faeces from specific-pathogen-free mice to germ-free mice restored germ-dependent clonotypes, directly implicating BCR selection. We identified somatic hypermutations that were recurrently selected in such public clonotypes, indicating that affinity maturation occurs in mouse PP GCs under homeostatic conditions. Thus, persistent gut antigens select recurrent BCR clonotypes to seed chronic PP GC responses.
PMID: 32499646
ISSN: 1476-4687
CID: 4473612