Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:nudlee01

Total Results:

185


RNA polymerase drives ribonucleotide excision DNA repair in E. coli

Hao, Zhitai; Gowder, Manjunath; Proshkin, Sergey; Bharati, Binod K; Epshtein, Vitaly; Svetlov, Vladimir; Shamovsky, Ilya; Nudler, Evgeny
Ribonuclease HII (RNaseHII) is the principal enzyme that removes misincorporated ribonucleoside monophosphates (rNMPs) from genomic DNA. Here, we present structural, biochemical, and genetic evidence demonstrating that ribonucleotide excision repair (RER) is directly coupled to transcription. Affinity pull-downs and mass-spectrometry-assisted mapping of in cellulo inter-protein cross-linking reveal the majority of RNaseHII molecules interacting with RNA polymerase (RNAP) in E. coli. Cryoelectron microscopy structures of RNaseHII bound to RNAP during elongation, with and without the target rNMP substrate, show specific protein-protein interactions that define the transcription-coupled RER (TC-RER) complex in engaged and unengaged states. The weakening of RNAP-RNaseHII interactions compromises RER in vivo. The structure-functional data support a model where RNaseHII scans DNA in one dimension in search for rNMPs while "riding" the RNAP. We further demonstrate that TC-RER accounts for a significant fraction of repair events, thereby establishing RNAP as a surveillance "vehicle" for detecting the most frequently occurring replication errors.
PMID: 37196657
ISSN: 1097-4172
CID: 5503582

Control of transcription elongation and DNA repair by alarmone ppGpp

Weaver, Jacob W; Proshkin, Sergey; Duan, Wenqian; Epshtein, Vitaly; Gowder, Manjunath; Bharati, Binod K; Afanaseva, Elena; Mironov, Alexander; Serganov, Alexander; Nudler, Evgeny
Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More recently, ppGpp has been implicated in coupling transcription and DNA repair; however, the mechanism of ppGpp engagement remained elusive. Here we present structural, biochemical and genetic evidence that ppGpp controls Escherichia coli RNA polymerase (RNAP) during elongation via a specific site that is nonfunctional during initiation. Structure-guided mutagenesis renders the elongation (but not initiation) complex unresponsive to ppGpp and increases bacterial sensitivity to genotoxic agents and ultraviolet radiation. Thus, ppGpp binds RNAP at sites with distinct functions in initiation and elongation, with the latter being important for promoting DNA repair. Our data provide insights on the molecular mechanism of ppGpp-mediated adaptation during stress, and further highlight the intricate relationships between genome stability, stress responses and transcription.
PMID: 36997761
ISSN: 1545-9985
CID: 5463412

RNA polymerase and ppGpp deliver a one-two punch to antibiotics [Comment]

Rasouly, Aviram; Nudler, Evgeny
Mutation rates are elevated in response to sub-inhibitory concentrations of antibiotics. In this issue, Zhai et al.1 report a role for both ppGpp binding sites on RNAP in stress-induced mutagenesis.
PMID: 37084711
ISSN: 1097-4164
CID: 5464622

Structural basis of histone H2A lysine 119 deubiquitination by Polycomb Repressive Deubiquitinase BAP1/ASXL1

Thomas, Jonathan F; Valencia-Sánchez, Marco Igor; Tamburri, Simone; Gloor, Susan L; Rustichelli, Samantha; Godínez-López, Victoria; De Ioannes, Pablo; Lee, Rachel; Abini-Agbomson, Stephen; Gretarsson, Kristjan; Burg, Jonathan M; Hickman, Allison R; Sun, Lu; Gopinath, Saarang; Taylor, Hailey; Meiners, Matthew J; Cheek, Marcus A; Rice, William; Nudler, Evgeny; Lu, Chao; Keogh, Michael-Christopher; Pasini, Diego; Armache, Karim-Jean
UNLABELLED:The maintenance of gene expression patterns during metazoan development is achieved by the actions of Polycomb group (PcG) complexes. An essential modification marking silenced genes is monoubiquitination of histone H2A lysine 119 (H2AK119Ub) deposited by the E3 ubiquitin ligase activity of the non-canonical Polycomb Repressive Complex 1. The Polycomb Repressive Deubiquitinase (PR-DUB) complex cleaves monoubiquitin from histone H2A lysine 119 (H2AK119Ub) to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. BAP1 and ASXL1, subunits that form active PR-DUB, are among the most frequently mutated epigenetic factors in human cancers, underscoring their biological importance. How PR-DUB achieves specificity for H2AK119Ub to regulate Polycomb silencing is unknown, and the mechanisms of most of the mutations in BAP1 and ASXL1 found in cancer have not been established. Here we determine a cryo-EM structure of human BAP1 bound to the ASXL1 DEUBAD domain in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for remodeling the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing new insight into understanding cancer etiology. ONE SENTENCE SUMMARY/UNASSIGNED:We reveal the molecular mechanism of nucleosomal H2AK119Ub deubiquitination by human BAP1/ASXL1.
PMID: 36865140
ISSN: 2692-8205
CID: 5852342

Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1

Thomas, Jonathan F.; Valencia-Sanchez, Marco Igor; Tamburri, Simone; Gloor, Susan L.; Rustichelli, Samantha; Godinez-Lopez, Victoria; De Ioannes, Pablo; Lee, Rachel; Abini-Agbomson, Stephen; Gretarsson, Kristjan; Burg, Jonathan M.; Hickman, Allison R.; Sun, Lu; Gopinath, Saarang; Taylor, Hailey F.; Sun, Zu-Wen; Ezell, Ryan J.; Vaidya, Anup; Meiners, Matthew J.; Cheek, Marcus A.; Rice, William J.; Svetlov, Vladimir; Nudler, Evgeny; Lu, Chao; Keogh, Michael-Christopher; Pasini, Diego; Armache, Karim-Jean
ISI:001045489300011
ISSN: 2375-2548
CID: 5852362

Shelterin is a dimeric complex with extensive structural heterogeneity

Zinder, John C; Olinares, Paul Dominic B; Svetlov, Vladimir; Bush, Martin W; Nudler, Evgeny; Chait, Brian T; Walz, Thomas; de Lange, Titia
Human shelterin is a six-subunit complex-composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide-binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.
PMID: 35881804
ISSN: 1091-6490
CID: 5276382

Cryo-EM structure of the human CST-Polα/primase complex in a recruitment state

Cai, Sarah W; Zinder, John C; Svetlov, Vladimir; Bush, Martin W; Nudler, Evgeny; Walz, Thomas; de Lange, Titia
The CST-Polα/primase complex is essential for telomere maintenance and functions to counteract resection at double-strand breaks. We report a 4.6-Å resolution cryo-EM structure of human CST-Polα/primase, captured prior to catalysis in a recruitment state stabilized by chemical cross-linking. Our structure reveals an evolutionarily conserved interaction between the C-terminal domain of the catalytic POLA1 subunit and an N-terminal expansion in metazoan CTC1. Cross-linking mass spectrometry and negative-stain EM analysis provide insight into CST binding by the flexible POLA1 N-terminus. Finally, Coats plus syndrome disease mutations previously characterized to disrupt formation of the CST-Polα/primase complex map to protein-protein interfaces observed in the recruitment state. Together, our results shed light on the architecture and stoichiometry of the metazoan fill-in machinery.
PMID: 35578024
ISSN: 1545-9985
CID: 5284212

The very hungry bactericidal antibiotics

Rasouly, Aviram; Nudler, Evgeny
PMCID:9282421
PMID: 35867771
ISSN: 1091-6490
CID: 5276052

Inheritance of repressed chromatin domains during S phase requires the histone chaperone NPM1

Escobar, Thelma M; Yu, Jia-Ray; Liu, Sanxiong; Lucero, Kimberly; Vasilyev, Nikita; Nudler, Evgeny; Reinberg, Danny
The epigenetic process safeguards cell identity during cell division through the inheritance of appropriate gene expression profiles. We demonstrated previously that parental nucleosomes are inherited by the same chromatin domains during DNA replication only in the case of repressed chromatin. We now show that this specificity is conveyed by NPM1, a histone H3/H4 chaperone. Proteomic analyses of late S-phase chromatin revealed NPM1 in association with both H3K27me3, an integral component of facultative heterochromatin, and MCM2, an integral component of the DNA replication machinery; moreover, NPM1 interacts directly with PRC2 and with MCM2. Given that NPM1 is essential, the inheritance of repressed chromatin domains was examined anew using mESCs expressing an auxin-degradable version of endogenous NPM1. Upon NPM1 degradation, cells accumulated in the G1-S phase of the cell cycle and parental nucleosome inheritance from repressed chromatin domains was markedly compromised. NPM1 chaperone activity may contribute to the integrity of this process as appropriate inheritance required the NPM1 acidic patches.
PMCID:9045712
PMID: 35476441
ISSN: 2375-2548
CID: 5217492

Crucial role and mechanism of transcription-coupled DNA repair in bacteria

Bharati, Binod K; Gowder, Manjunath; Zheng, Fangfang; Alzoubi, Khaled; Svetlov, Vladimir; Kamarthapu, Venu; Weaver, Jacob W; Epshtein, Vitaly; Vasilyev, Nikita; Shen, Liqiang; Zhang, Yu; Nudler, Evgeny
Transcription-coupled DNA repair (TCR) is presumed to be a minor sub-pathway of nucleotide excision repair (NER) in bacteria. Global genomic repair is thought to perform the bulk of repair independently of transcription. TCR is also believed to be mediated exclusively by Mfd-a DNA translocase of a marginal NER phenotype1-3. Here we combined in cellulo cross-linking mass spectrometry with structural, biochemical and genetic approaches to map the interactions within the TCR complex (TCRC) and to determine the actual sequence of events that leads to NER in vivo. We show that RNA polymerase (RNAP) serves as the primary sensor of DNA damage and acts as a platform for the recruitment of NER enzymes. UvrA and UvrD associate with RNAP continuously, forming a surveillance pre-TCRC. In response to DNA damage, pre-TCRC recruits a second UvrD monomer to form a helicase-competent UvrD dimer that promotes backtracking of the TCRC. The weakening of UvrD-RNAP interactions renders cells sensitive to genotoxic stress. TCRC then recruits a second UvrA molecule and UvrB to initiate the repair process. Contrary to the conventional view, we show that TCR accounts for the vast majority of chromosomal repair events; that is, TCR thoroughly dominates over global genomic repair. We also show that TCR is largely independent of Mfd. We propose that Mfd has an indirect role in this process: it participates in removing obstructive RNAPs in front of TCRCs and also in recovering TCRCs from backtracking after repair has been completed.
PMID: 35355008
ISSN: 1476-4687
CID: 5201232