Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:odonnk02

Total Results:

22


Strain differences in lithium attenuation of d-amphetamine-induced hyperlocomotion: a mouse model for the genetics of clinical response to lithium

Gould, Todd D; O'Donnell, Kelley C; Picchini, Alyssa M; Manji, Husseini K
Lithium attenuation of stimulant-induced hyperlocomotion is a rodent model that may be useful both to understand the mechanism of the therapeutic action of lithium and to develop novel lithium-mimetic compounds. To lay the foundation for future investigations into the neurobiology and genetics of lithium as a therapeutic agent, we studied the effect of lithium on d-amphetamine-induced hyperlocomotion in 12 (3 outbred) mouse strains. In our initial screening, mice received either (1) no drugs, (2) LiCl only, (3) d-amphetamine only, or (4) d-amphetamine and LiCl. Whereas there was no significant effect of LiCl alone on locomotion in any strain, there was a large degree of strain variation in the effects of LiCl combined with d-amphetamine. LiCl attenuated d-amphetamine-induced hyperlocomotion in C57BL/6J, C57BL/6Tac, Black Swiss, and CBA/J mice, whereas CD-1, FVB/NJ, SWR/J, and NIH Swiss mice, which were responsive to d-amphetamine, showed no significant effect of LiCl. d-Amphetamine-induced hyperlocomotion in the C3H/HeJ strain was increased by pretreatment with lithium. A subset of strains were treated for 4 weeks with lithium carbonate before the d-amphetamine challenge, and in each of these strains, lithium produced effects identical to those seen following acute administration. Strain responsiveness to lithium was not dependent upon the dose of either d-amphetamine or LiCl. Further, the results are not explained by brain lithium levels, which suggests that these behavioral responses to lithium are under the control of inherent genetic or other biological mechanisms specific to the effects of lithium on brain function.
PMID: 17151598
ISSN: 0893-133x
CID: 5605902

The behavioral actions of lithium in rodent models: leads to develop novel therapeutics

O'Donnell, Kelley C; Gould, Todd D
For nearly as long as lithium has been in clinical use for the treatment of bipolar disorder, depression, and other conditions, investigators have attempted to characterize its effects on behaviors in rodents. Lithium consistently decreases exploratory activity, rearing, aggression, and amphetamine-induced hyperlocomotion; and it increases the sensitivity to pilocarpine-induced seizures, decreases immobility time in the forced swim test, and attenuates reserpine-induced hypolocomotion. Lithium also predictably induces conditioned taste aversion and alterations in circadian rhythms. The modulation of stereotypy, sensitization, and reward behavior are less consistent actions of the drug. These behavioral models may be relevant to human symptoms and to clinical endophenotypes. It is likely that the actions of lithium in a subset of these animal models are related to the therapeutic efficacy, as well the side effects, of the drug. We conclude with a brief discussion of various molecular mechanisms by which these lithium-sensitive behaviors may be mediated, and comment on the ways in which rat and mouse models can be used more effectively in the future to address persistent questions about the therapeutically relevant molecular actions of lithium.
PMCID:2150568
PMID: 17532044
ISSN: 0149-7634
CID: 5605972