Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:papagt01

Total Results:

68


Metabolic Reprogramming by Histone Deacetylase Inhibition Selectively Targets NRF2-activated tumors

Karagiannis, Dimitris; Wu, Warren; Li, Albert; Hayashi, Makiko; Chen, Xiao; Yip, Michaela; Mangipudy, Vaibhav; Xu, Xinjing; Sánchez-Rivera, Francisco J; Soto-Feliciano, Yadira M; Ye, Jiangbin; Papagiannakopoulos, Thales; Lu, Chao
Interplay between metabolism and chromatin signaling have been implicated in cancer initiation and progression. However, whether and how metabolic reprogramming in tumors generates specific epigenetic vulnerabilities remain unclear. Lung adenocarcinoma (LUAD) tumors frequently harbor mutations that cause aberrant activation of the NRF2 antioxidant pathway and drive aggressive and chemo-resistant disease. We performed a chromatin-focused CRISPR screen and report that NRF2 activation sensitized LUAD cells to genetic and chemical inhibition of class I histone deacetylases (HDAC). This association was consistently observed across cultured cells, syngeneic mouse models and patient-derived xenografts. HDAC inhibition causes widespread increases in histone H4 acetylation (H4ac) at intergenic regions, but also drives re-targeting of H4ac reader protein BRD4 away from promoters with high H4ac levels and transcriptional downregulation of corresponding genes. Integrative epigenomic, transcriptomic and metabolomic analysis demonstrates that these chromatin changes are associated with reduced flux into amino acid metabolism and de novo nucleotide synthesis pathways that are preferentially required for the survival of NRF2-active cancer cells. Together, our findings suggest that metabolic alterations such as NRF2 activation could serve as biomarkers for effective repurposing of HDAC inhibitors to treat solid tumors.
PMCID:10168258
PMID: 37162970
ISSN: 2692-8205
CID: 5507612

In vivo metabolomics identifies CD38 as an emergent vulnerability in LKB1 -mutant lung cancer

Deng, Jiehui; Peng, David H; Fenyo, David; Yuan, Hao; Lopez, Alfonso; Levin, Daniel S; Meynardie, Mary; Quinteros, Mari; Ranieri, Michela; Sahu, Soumyadip; Lau, Sally C M; Shum, Elaine; Velcheti, Vamsidhar; Punekar, Salman R; Rekhtman, Natasha; Dowling, Catríona M; Weerasekara, Vajira; Xue, Yun; Ji, Hongbin; Siu, Yik; Jones, Drew; Hata, Aaron N; Shimamura, Takeshi; Poirier, John T; Rudin, Charles M; Hattori, Takamitsu; Koide, Shohei; Papagiannakopoulos, Thales; Neel, Benjamin G; Bardeesy, Nabeel; Wong, Kwok-Kin
UNLABELLED:. Surprisingly, compared with other genetic subsets, murine and human LKB1-mutant NSCLC show marked overexpression of the NAD+-catabolizing ectoenzyme, CD38 on the surface of tumor cells. Loss of LKB1 or inactivation of Salt-Inducible Kinases (SIKs)-key downstream effectors of LKB1- induces CD38 transcription induction via a CREB binding site in the CD38 promoter. Treatment with the FDA-approved anti-CD38 antibody, daratumumab, inhibited growth of LKB1-mutant NSCLC xenografts. Together, these results reveal CD38 as a promising therapeutic target in patients with LKB1 mutant lung cancer. SIGNIFICANCE/CONCLUSIONS:tumor suppressor of lung adenocarcinoma patients and are associated with resistance to current treatments. Our study identified CD38 as a potential therapeutic target that is highly overexpressed in this specific subtype of cancer, associated with a shift in NAD homeostasis.
PMCID:10153147
PMID: 37131623
ISSN: 2692-8205
CID: 5507602

NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer

Weiss-Sadan, Tommy; Ge, Maolin; Hayashi, Makiko; Gohar, Magdy; Yao, Cong-Hui; de Groot, Adriaan; Harry, Stefan; Carlin, Alexander; Fischer, Hannah; Shi, Lei; Wei, Ting-Yu; Adelmann, Charles H; Wolf, Konstantin; Vornbäumen, Tristan; Dürr, Benedikt R; Takahashi, Mariko; Richter, Marianne; Zhang, Junbing; Yang, Tzu-Yi; Vijay, Vindhya; Fisher, David E; Hata, Aaron N; Haigis, Marcia C; Mostoslavsky, Raul; Bardeesy, Nabeel; Papagiannakopoulos, Thales; Bar-Peled, Liron
PMID: 37019082
ISSN: 1932-7420
CID: 5507592

NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer

Weiss-Sadan, Tommy; Ge, Maolin; Hayashi, Makiko; Gohar, Magdy; Yao, Cong-Hui; de Groot, Adriaan; Harry, Stefan; Carlin, Alexander; Fischer, Hannah; Shi, Lei; Wei, Ting-Yu; Adelmann, Charles H; Wolf, Konstantin; Vornbäumen, Tristan; Dürr, Benedikt R; Takahashi, Mariko; Richter, Marianne; Zhang, Junbing; Yang, Tzu-Yi; Vijay, Vindhya; Fisher, David E; Hata, Aaron N; Haigis, Marcia C; Mostoslavsky, Raul; Bardeesy, Nabeel; Papagiannakopoulos, Thales; Bar-Peled, Liron
Multiple cancers regulate oxidative stress by activating the transcription factor NRF2 through mutation of its negative regulator, KEAP1. NRF2 has been studied extensively in KEAP1-mutant cancers; however, the role of this pathway in cancers with wild-type KEAP1 remains poorly understood. To answer this question, we induced NRF2 via pharmacological inactivation of KEAP1 in a panel of 50+ non-small cell lung cancer cell lines. Unexpectedly, marked decreases in viability were observed in >13% of the cell lines-an effect that was rescued by NRF2 ablation. Genome-wide and targeted CRISPR screens revealed that NRF2 induces NADH-reductive stress, through the upregulation of the NAD+-consuming enzyme ALDH3A1. Leveraging these findings, we show that cells treated with KEAP1 inhibitors or those with endogenous KEAP1 mutations are selectively vulnerable to Complex I inhibition, which impairs NADH oxidation capacity and potentiates reductive stress. Thus, we identify reductive stress as a metabolic vulnerability in NRF2-activated lung cancers.
PMCID:9998367
PMID: 36841242
ISSN: 1932-7420
CID: 5432322

DNA methylation profiling identifies subgroups of lung adenocarcinoma with distinct immune cell composition, DNA methylation age, and clinical outcome

Guidry, Kayla; Vasudevaraja, Varshini; Labbe, Kristen; Mohamed, Hussein; Serrano, Jonathan; Guidry, Brett W; DeLorenzo, Michael; Zhang, Hua; Deng, Jiehui; Sahu, Soumyadip; Almonte, Christina; Moreira, Andre L; Tsirigos, Aristotelis; Papagiannakopoulos, Thales; Pass, Harvey; Snuderl, Matija; Wong, Kwok-Kin
PURPOSE/OBJECTIVE:Lung adenocarcinoma (LUAD) is a clinically heterogenous disease, which is highlighted by the unpredictable recurrence in low-stage tumors and highly variable responses observed in patients treated with immunotherapies, which cannot be explained by mutational profiles. DNA methylation-based classification and understanding of microenviromental heterogeneity may allow stratification into clinically relevant molecular subtypes of LUADs. EXPERIMENTAL DESIGN/METHODS:We characterize the genome-wide DNA methylation landscape of 88 resected LUAD tumors. Exome sequencing focusing on a panel of cancer-related genes was used to genotype these adenocarcinoma samples. Bioinformatic and statistical tools, the immune cell composition, DNA methylation age (DNAm age), and DNA methylation clustering were used to identify clinically relevant subgroups. RESULTS:Deconvolution of DNA methylation data identified immunologically hot and cold subsets of lung adenocarcinomas. Additionally, concurrent factors were analyzed that could affect the immune microenvironment, such as smoking history, ethnicity, or presence of KRAS or TP53 mutations. When the DNAm age was calculated, a lower DNAm age was correlated with the presence of a set of oncogenic drivers, poor overall survival, and specific immune cell populations. Unsupervised DNA methylation clustering identified 6 molecular subgroups of LUAD tumors with distinct clinical and microenvironmental characteristics. CONCLUSIONS:Our results demonstrate that DNA methylation signatures can stratify lung adenocarcinoma into clinically relevant subtypes, and thus such classification of LUAD at the time of resection may lead to better methods in predicting tumor recurrence and therapy responses.
PMID: 35802677
ISSN: 1557-3265
CID: 5280672

Author Correction: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis

Alvarez, Samantha W; Sviderskiy, Vladislav O; Terzi, Erdem M; Papagiannakopoulos, Thales; Moreira, Andre L; Adams, Sylvia; Sabatini, David M; Birsoy, Kıvanç; Possemato, Richard
PMID: 36104569
ISSN: 1476-4687
CID: 5336292

NRF2: KEAPing Tumors Protected

Pillai, Ray; Hayashi, Makiko; Zavitsanou, Anastasia-Maria; Papagiannakopoulos, Thales
The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway plays a physiologic protective role against xenobiotics and reactive oxygen species. However, activation of NRF2 provides a powerful selective advantage for tumors by rewiring metabolism to enhance proliferation, suppress various forms of stress, and promote immune evasion. Genetic, epigenetic, and posttranslational alterations that activate the KEAP1/NRF2 pathway are found in multiple solid tumors. Emerging clinical data highlight that alterations in this pathway result in resistance to multiple therapies. Here, we provide an overview of how dysregulation of the KEAP1/NRF2 pathway in cancer contributes to several hallmarks of cancer that promote tumorigenesis and lead to treatment resistance. SIGNIFICANCE: Alterations in the KEAP1/NRF2 pathway are found in multiple cancer types. Activation of NRF2 leads to metabolic rewiring of tumors that promote tumor initiation and progression. Here we present the known alterations that lead to NRF2 activation in cancer, the mechanisms in which NRF2 activation promotes tumors, and the therapeutic implications of NRF2 activation.
PMID: 35101864
ISSN: 2159-8290
CID: 5153422

EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion

Marzio, Antonio; Kurz, Emma; Sahni, Jennifer M; Di Feo, Giuseppe; Puccini, Joseph; Jiang, Shaowen; Hirsch, Carolina Alcantara; Arbini, Arnaldo A; Wu, Warren L; Pass, Harvey I; Bar-Sagi, Dafna; Papagiannakopoulos, Thales; Pagano, Michele
Non-small cell lung cancers (NSCLCs) harboring KEAP1 mutations are often resistant to immunotherapy. Here, we show that KEAP1 targets EMSY for ubiquitin-mediated degradation to regulate homologous recombination repair (HRR) and anti-tumor immunity. Loss of KEAP1 in NSCLC induces stabilization of EMSY, producing a BRCAness phenotype, i.e., HRR defects and sensitivity to PARP inhibitors. Defective HRR contributes to a high tumor mutational burden that, in turn, is expected to prompt an innate immune response. Notably, EMSY accumulation suppresses the type I interferon response and impairs innate immune signaling, fostering cancer immune evasion. Activation of the type I interferon response in the tumor microenvironment using a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of KEAP1-mutant tumors. Our results suggest that targeting PARP and STING pathways, individually or in combination, represents a therapeutic strategy in NSCLC patients harboring alterations in KEAP1.
PMID: 34963055
ISSN: 1097-4172
CID: 5108142

Valine tRNA levels and availability regulate complex I assembly in leukaemia

Thandapani, Palaniraja; Kloetgen, Andreas; Witkowski, Matthew T; Glytsou, Christina; Lee, Anna K; Wang, Eric; Wang, Jingjing; LeBoeuf, Sarah E; Avrampou, Kleopatra; Papagiannakopoulos, Thales; Tsirigos, Aristotelis; Aifantis, Iannis
Although deregulation of transfer RNA (tRNA) biogenesis promotes the translation of pro-tumorigenic mRNAs in cancers1,2, the mechanisms and consequences of tRNA deregulation in tumorigenesis are poorly understood. Here we use a CRISPR-Cas9 screen to focus on genes that have been implicated in tRNA biogenesis, and identify a mechanism by which altered valine tRNA biogenesis enhances mitochondrial bioenergetics in T cell acute lymphoblastic leukaemia (T-ALL). Expression of valine aminoacyl tRNA synthetase is transcriptionally upregulated by NOTCH1, a key oncogene in T-ALL, underlining a role for oncogenic transcriptional programs in coordinating tRNA supply and demand. Limiting valine bioavailability through restriction of dietary valine intake disrupted this balance in mice, resulting in decreased leukaemic burden and increased survival in vivo. Mechanistically, valine restriction reduced translation rates of mRNAs that encode subunits of mitochondrial complex I, leading to defective assembly of complex I and impaired oxidative phosphorylation. Finally, a genome-wide CRISPR-Cas9 loss-of-function screen in differential valine conditions identified several genes, including SLC7A5 and BCL2, whose genetic ablation or pharmacological inhibition synergized with valine restriction to reduce T-ALL growth. Our findings identify tRNA deregulation as a critical adaptation in the pathogenesis of T-ALL and provide a molecular basis for the use of dietary approaches to target tRNA biogenesis in blood malignancies.
PMID: 34937946
ISSN: 1476-4687
CID: 5108982

Rlf-Mycl Gene Fusion Drives Tumorigenesis and Metastasis in a Mouse Model of Small Cell Lung Cancer

Ciampricotti, Metamia; Karakousi, Triantafyllia; Richards, Allison L; Quintanal-Villalonga, Àlvaro; Karatza, Angeliki; Caeser, Rebecca; Costa, Emily A; Allaj, Viola; Manoj, Parvathy; Spainhower, Kyle B; Kombak, Faruk E; Sanchez-Rivera, Francisco J; Jaspers, Janneke E; Zavitsanou, Anastasia-Maria; Maddalo, Danilo; Ventura, Andrea; Rideout, William M; Akama-Garren, Elliot H; Jacks, Tyler; Donoghue, Mark T A; Sen, Triparna; Oliver, Trudy G; Poirier, John T; Papagiannakopoulos, Thales; Rudin, Charles M
Small cell lung cancer (SCLC) has limited therapeutic options and an exceptionally poor prognosis. Understanding the oncogenic drivers of SCLC may help define novel therapeutic targets. Recurrent genomic rearrangements have been identified in SCLC, most notably an in-frame gene fusion between RLF and MYCL found in up to 7% of the predominant ASCL1-expressing subtype. To explore the role of this fusion in oncogenesis and tumor progression, we used CRISPR/Cas9 somatic editing to generate a Rlf-Mycl-driven mouse model of SCLC. Rlf-Mycl fusion accelerated transformation and proliferation of murine SCLC and increased metastatic dissemination and the diversity of metastatic sites. Tumors from the Rlf-Mycl genetically engineered mouse model displayed gene expression similarities with human Rlf-Mycl SCLC. Together, our studies support Rlf-Mycl as the first demonstrated fusion oncogenic driver in SCLC and provide a new preclinical mouse model for the study of this subtype of SCLC. SIGNIFICANCE: The biological and therapeutic implications of gene fusions in SCLC, an aggressive metastatic lung cancer, are unknown. Our study investigates the functional significance of the in-frame Rlf-Mycl gene fusion by developing a Rlf-Mycl-driven genetically engineered mouse model and defining the impact on tumor growth and metastasis.
PMID: 34344693
ISSN: 2159-8290
CID: 5084902