Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:ricem01

Total Results:

96


Detection of evoked acetylcholine release in mouse brain slices

Asri, R; O'Neill, B; Patel, J C; Siletti, K A; Rice, M E
The study of transmitter interactions in reward and motor pathways in the brain, including the striatum, requires methodology to detect stimulus-driven neurotransmitter release events. Such methods exist for dopamine, and have contributed to the understanding of local and behavioral factors that regulate dopamine release. However, factors that regulate release of another key transmitter in these pathways, acetylcholine (ACh), are unresolved, in part because of limited temporal and spatial resolution of current detection methods. We have optimized a voltammetric method for detection of local stimulus-evoked ACh release using enzyme-coated carbon-fiber microelectrodes and fast-scan cyclic voltammetry. These electrodes are based on the detection of H2O2 generated by the actions of acetylcholine esterase and choline oxidase, and reliably respond to ACh in a concentration-dependent manner. Methods for enzyme coating were optimized for mechanical stability that allowed for their use in ex vivo brain slices. We report here the first quantitative assessment of extracellular ACh concentration after local electrical stimulation in dorsal striatum in slices from control mice. The selective detection of ACh under these conditions was confirmed by showing that the response detected in the control slices was absent in slices from mice bred to lack ACh synthesis in the forebrain. These electrodes represent a new tool to study ACh and ACh-dopamine interactions with micrometer spatial resolution.
PMCID:5353855
PMID: 27722568
ISSN: 1364-5528
CID: 2278262

Striatal dopamine neurotransmission: regulation of release and uptake

Sulzer, David; Cragg, Stephanie J; Rice, Margaret E
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
PMCID:4850498
PMID: 27141430
ISSN: 2210-5336
CID: 2101182

Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

Stouffer, Melissa A; Woods, Catherine A; Patel, Jyoti C; Lee, Christian R; Witkovsky, Paul; Bao, Li; Machold, Robert P; Jones, Kymry T; de Vaca, Soledad Cabeza; Reith, Maarten E A; Carr, Kenneth D; Rice, Margaret E
Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.
PMCID:4624275
PMID: 26503322
ISSN: 2041-1723
CID: 1816772

Inhibitory and excitatory neuromodulation by hydrogen peroxide: translating energetics to information

Lee, Christian R; Patel, Jyoti C; O'Neill, Brian; Rice, Margaret E
Historically, brain neurochemicals have been broadly classified as energetic or informational. However, increasing evidence implicates metabolic substrates and byproducts as signalling agents, which blurs the boundary between energy and information, and suggests the introduction of a new category for 'translational' substances that convey changes in energy state to information. One intriguing example is hydrogen peroxide (H2 O2 ), which is a small, readily diffusible molecule. Produced during mitochondrial respiration, this reactive oxygen species, can mediate dynamic regulation of neuronal activity and transmitter release by activating inhibitory ATP-sensitive K(+) (KATP ) channels, as well as a class of excitatory non-selective cation channels, TRPM2. Studies using ex vivo guinea pig brain slices have revealed that activity-generated H2 O2 can act via KATP channels to inhibit dopamine release in dorsal striatum and dopamine neuron activity in the substantia nigra pars compacta. In sharp contrast, endogenously generated H2 O2 enhances the excitability of GABAergic projection neurons in the dorsal striatum and substantia nigra pars reticulata by activating TRPM2 channels. These studies suggest that the balance of excitation vs. inhibition produced in a given cell by metabolically generated H2 O2 will be dictated by the relative abundance of H2 O2 -sensitive ion channel targets that receive this translational signal.
PMCID:4560576
PMID: 25605547
ISSN: 1469-7793
CID: 1749342

Somatodendritic dopamine release: recent mechanistic insights

Rice, Margaret E; Patel, Jyoti C
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins.
PMCID:4455754
PMID: 26009764
ISSN: 1471-2970
CID: 1645852

Striatal Dopamine Release Regulation by the Cholinergic Properties of the Smokeless Tobacco, Gutkha

O'Neill, Brian; Lauterstein, Dana; Patel, Jyoti C; Zelikoff, Judith T; Rice, Margaret E
Tobacco products influence striatal dopamine (DA) release primarily through the actions of nicotine, an agonist of nicotinic acetylcholine receptors (nAChR). Gutkha is a smokeless tobacco product that includes the habit-forming areca nut, and other plant-based constituents contain muscarinic acetylcholine receptor (mAChR) agonists and other cholinergic agents, as well as nicotine. The net influence of the cholinergic agents in gutkha on striatal DA release is therefore difficult to predict. This study investigated the influence of gutkha extract on evoked DA release in mouse striatal slices using fast-scan cyclic voltammetry. The potency of a given concentration of nicotine in the gutkha extract was found to be significantly lower than that of a comparable concentration of nicotine alone. Atropine, a mAChR antagonist, increased the potency of gutkha-associated nicotine; however, other experiments suggested that this was mediated in part by effects of atropine directly at nAChRs. Overall, these results suggest that the unique constituents of gutkha work together to oppose the influence of gutkha-associated nicotine on evoked striatal DA release.
PMCID:4601902
PMID: 25797409
ISSN: 1948-7193
CID: 1513772

Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission

Karayannis, T; Au, E; Patel, J C; Kruglikov, I; Markx, S; Delorme, R; Heron, D; Salomon, D; Glessner, J; Restituito, S; Gordon, A; Rodriguez-Murillo, L; Roy, N C; Gogos, J A; Rudy, B; Rice, M E; Karayiorgou, M; Hakonarson, H; Keren, B; Huguet, G; Bourgeron, T; Hoeffer, C; Tsien, R W; Peles, E; Fishell, G
Although considerable evidence suggests that the chemical synapse is a lynchpin underlying affective disorders, how molecular insults differentially affect specific synaptic connections remains poorly understood. For instance, Neurexin 1a and 2 (NRXN1 and NRXN2) and CNTNAP2 (also known as CASPR2), all members of the neurexin superfamily of transmembrane molecules, have been implicated in neuropsychiatric disorders. However, their loss leads to deficits that have been best characterized with regard to their effect on excitatory cells. Notably, other disease-associated genes such as BDNF and ERBB4 implicate specific interneuron synapses in psychiatric disorders. Consistent with this, cortical interneuron dysfunction has been linked to epilepsy, schizophrenia and autism. Using a microarray screen that focused upon synapse-associated molecules, we identified Cntnap4 (contactin associated protein-like 4, also known as Caspr4) as highly enriched in developing murine interneurons. In this study we show that Cntnap4 is localized presynaptically and its loss leads to a reduction in the output of cortical parvalbumin (PV)-positive GABAergic (gamma-aminobutyric acid producing) basket cells. Paradoxically, the loss of Cntnap4 augments midbrain dopaminergic release in the nucleus accumbens. In Cntnap4 mutant mice, synaptic defects in these disease-relevant neuronal populations are mirrored by sensory-motor gating and grooming endophenotypes; these symptoms could be pharmacologically reversed, providing promise for therapeutic intervention in psychiatric disorders.
PMCID:4281262
PMID: 24870235
ISSN: 0028-0836
CID: 1102842

TRPM2 Channels Are Required for NMDA-Induced Burst Firing and Contribute to H2O2-Dependent Modulation in Substantia Nigra Pars Reticulata GABAergic Neurons

Lee, Christian R; Machold, Robert P; Witkovsky, Paul; Rice, Margaret E
Substantia nigra pars reticulata (SNr) GABAergic neurons are projection neurons that convey output from the basal ganglia to target structures. These neurons exhibit spontaneous regular firing, but also exhibit burst firing in the presence of NMDA or when excitatory glutamatergic input to the SNr is activated. Notably, an increase in burst firing is also seen in Parkinson's disease. Therefore, elucidating conductances that mediate spontaneous activity and changes of firing pattern in these neurons is essential for understanding how the basal ganglia control movement. Using ex vivo slices of guinea pig midbrain, we show that SNr GABAergic neurons express transient receptor potential melastatin 2 (TRPM2) channels that underlie NMDA-induced burst firing. Furthermore, we show that spontaneous firing rate and burst activity are modulated by the reactive oxygen species H(2)O(2) acting via TRPM2 channels. Thus, our results indicate that activation of TRPM2 channels is necessary for burst firing in SNr GABAergic neurons and their responsiveness to modulatory H(2)O(2). These findings have implications not only for normal regulation, but also for Parkinson's disease, which involves excitotoxicity and oxidative stress.
PMCID:3705724
PMID: 23325252
ISSN: 0270-6474
CID: 213462

Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices

Patel, Jyoti C; Rice, Margaret E
Brain dopamine pathways serve wide-ranging functions including the control of movement, reward, cognition, learning, and mood. Consequently, dysfunction of dopamine transmission has been implicated in clinical conditions such as Parkinson's disease, schizophrenia, addiction, and depression. Establishing factors that regulate dopamine release can provide novel insights into dopaminergic communication under normal conditions, as well as in animal models of disease in the brain. Here we describe methods for the study of somatodendritic and axonal dopamine release in brain slice preparations. Topics covered include preparation and calibration of carbon-fiber microelectrodes for use with fast-scan cyclic voltammetry, preparation of midbrain and forebrain slices, and procedures of eliciting and recording electrically evoked dopamine release from in vitro brain slices.
PMID: 23296788
ISSN: 1064-3745
CID: 211502

Classification of H(2)O(2) as a Neuromodulator that Regulates Striatal Dopamine Release on a Subsecond Time Scale

Patel, Jyoti C; Rice, Margaret E
Here we review evidence that the reactive oxygen species, hydrogen peroxide (H(2)O(2)), meets the criteria for classification as a neuromodulator through its effects on striatal dopamine (DA) release. This evidence was obtained using fast-scan cyclic voltammetry to detect evoked DA release in striatal slices, along with whole-cell and fluorescence imaging to monitor cellular activity and H(2)O(2) generation in striatal medium spiny neurons (MSNs). The data show that (1) exogenous H(2)O(2) suppresses DA release in dorsal striatum and nucleus accumbens shell and the same effect is seen with elevation of endogenous H(2)O(2) levels; (2) H(2)O(2) is generated downstream from glutamatergic AMPA receptor activation in MSNs, but not DA axons; (3) generation of modulatory H(2)O(2) is activity dependent; (4) H(2)O(2) generated in MSNs diffuses to DA axons to cause transient DA release suppression by activating ATP-sensitive K(+) (K(ATP)) channels on DA axons; and (5) the amplitude of H(2)O(2)-dependent inhibition of DA release is attenuated by enzymatic degradation of H(2)O(2), but the subsecond time course is determined by H(2)O(2) diffusion rate and/or K(ATP)-channel kinetics. In the dorsal striatum, neuromodulatory H(2)O(2) is an intermediate in the regulation of DA release by the classical neurotransmitters glutamate and GABA, as well as other neuromodulators, including cannabinoids. However, modulatory actions of H(2)O(2) occur in other regions and cell types, as well, consistent with the widespread expression of K(ATP) and other H(2)O(2)-sensitive channels throughout the CNS.
PMCID:3526964
PMID: 23259034
ISSN: 1948-7193
CID: 207372