Searched for: in-biosketch:yes
person:tarpet01
High Level Mobility Training in Ambulatory Patients with Acquired Non-Progressive Central Neurological Injury: a Feasibility Study
Gallo, Estelle; Yao, Lanqiu; Tarpey, Thaddeus; Cepeda, Jaime; Connors, Katie Ann; Kedzierska, Iwona; Rao, Smita
The purpose of this study was to test the feasibility and safety of High-Level Mobility (HLM) training on adults with Acquired Brain Injury (ABI). Our hypotheses were that HLM training would be feasible and safe. This study was a pilot randomized control trial with a Simple Skill Group (SSG) and a Complex Skill Group (CSG). Both groups received 12 sessions over 8Â weeks and completed 4 testing sessions over 16Â weeks. The SSG focused on locomotion, while CSG focused on the acquisition of running. Feasibility was assessed in terms of process, resources, management, and scientific metrics, including safety. Among the 41 participants meeting inclusion criteria, 28 consented (CSG, n =Â 13, SSG, n =Â 15), 20 completed the assigned protocol and 8 withdrew (CSG n =Â 4, SSG n =Â 4). Adherence rate to assigned protocol was 100%. There were two Adverse Events (AEs), 1 over 142 SSG sessions and 1 over 120 CSG sessions. The AE Odd Ratio (OR) (CSG:SSG) was 1.18 (95% CI: 0.07, 19.15). The data support our hypotheses that HLM training is feasible and safe on ambulatory adults with ABI.
PMID: 35138211
ISSN: 1362-301x
CID: 5156422
Association of Convalescent Plasma Treatment With Clinical Status in Patients Hospitalized With COVID-19: A Meta-analysis
Troxel, Andrea B; Petkova, Eva; Goldfeld, Keith; Liu, Mengling; Tarpey, Thaddeus; Wu, Yinxiang; Wu, Danni; Agarwal, Anup; Avendaño-Solá, Cristina; Bainbridge, Emma; Bar, Katherine J; Devos, Timothy; Duarte, Rafael F; Gharbharan, Arvind; Hsue, Priscilla Y; Kumar, Gunjan; Luetkemeyer, Annie F; Meyfroidt, Geert; Nicola, André M; Mukherjee, Aparna; Ortigoza, Mila B; Pirofski, Liise-Anne; Rijnders, Bart J A; Rokx, Casper; Sancho-Lopez, Arantxa; Shaw, Pamela; Tebas, Pablo; Yoon, Hyun-Ah; Grudzen, Corita; Hochman, Judith; Antman, Elliott M
Importance:COVID-19 convalescent plasma (CCP) is a potentially beneficial treatment for COVID-19 that requires rigorous testing. Objective:To compile individual patient data from randomized clinical trials of CCP and to monitor the data until completion or until accumulated evidence enables reliable conclusions regarding the clinical outcomes associated with CCP. Data Sources:From May to August 2020, a systematic search was performed for trials of CCP in the literature, clinical trial registry sites, and medRxiv. Domain experts at local, national, and international organizations were consulted regularly. Study Selection:Eligible trials enrolled hospitalized patients with confirmed COVID-19, not receiving mechanical ventilation, and randomized them to CCP or control. The administered CCP was required to have measurable antibodies assessed locally. Data Extraction and Synthesis:A minimal data set was submitted regularly via a secure portal, analyzed using a prespecified bayesian statistical plan, and reviewed frequently by a collective data and safety monitoring board. Main Outcomes and Measures:Prespecified coprimary end points-the World Health Organization (WHO) 11-point ordinal scale analyzed using a proportional odds model and a binary indicator of WHO score of 7 or higher capturing the most severe outcomes including mechanical ventilation through death and analyzed using a logistic model-were assessed clinically at 14 days after randomization. Results:Eight international trials collectively enrolled 2369 participants (1138 randomized to control and 1231 randomized to CCP). A total of 2341 participants (median [IQR] age, 60 [50-72] years; 845 women [35.7%]) had primary outcome data as of April 2021. The median (IQR) of the ordinal WHO scale was 3 (3-6); the cumulative OR was 0.94 (95% credible interval [CrI], 0.74-1.19; posterior probability of OR <1 of 71%). A total of 352 patients (15%) had WHO score greater than or equal to 7; the OR was 0.94 (95% CrI, 0.69-1.30; posterior probability of OR <1 of 65%). Adjusted for baseline covariates, the ORs for mortality were 0.88 at day 14 (95% CrI, 0.61-1.26; posterior probability of OR <1 of 77%) and 0.85 at day 28 (95% CrI, 0.62-1.18; posterior probability of OR <1 of 84%). Heterogeneity of treatment effect sizes was observed across an array of baseline characteristics. Conclusions and Relevance:This meta-analysis found no association of CCP with better clinical outcomes for the typical patient. These findings suggest that real-time individual patient data pooling and meta-analysis during a pandemic are feasible, offering a model for future research and providing a rich data resource.
PMCID:8790669
PMID: 35076699
ISSN: 2574-3805
CID: 5153222
Development and Validation of a Treatment Benefit Index to Identify Hospitalized Patients With COVID-19 Who May Benefit From Convalescent Plasma
Park, Hyung; Tarpey, Thaddeus; Liu, Mengling; Goldfeld, Keith; Wu, Yinxiang; Wu, Danni; Li, Yi; Zhang, Jinchun; Ganguly, Dipyaman; Ray, Yogiraj; Paul, Shekhar Ranjan; Bhattacharya, Prasun; Belov, Artur; Huang, Yin; Villa, Carlos; Forshee, Richard; Verdun, Nicole C; Yoon, Hyun Ah; Agarwal, Anup; Simonovich, Ventura Alejandro; Scibona, Paula; Burgos Pratx, Leandro; Belloso, Waldo; Avendaño-Solá, Cristina; Bar, Katharine J; Duarte, Rafael F; Hsue, Priscilla Y; Luetkemeyer, Anne F; Meyfroidt, Geert; Nicola, André M; Mukherjee, Aparna; Ortigoza, Mila B; Pirofski, Liise-Anne; Rijnders, Bart J A; Troxel, Andrea; Antman, Elliott M; Petkova, Eva
Importance:Identifying which patients with COVID-19 are likely to benefit from COVID-19 convalescent plasma (CCP) treatment may have a large public health impact. Objective:To develop an index for predicting the expected relative treatment benefit from CCP compared with treatment without CCP for patients hospitalized for COVID-19 using patients' baseline characteristics. Design, Setting, and Participants:This prognostic study used data from the COMPILE study, ie, a meta-analysis of pooled individual patient data from 8 randomized clinical trials (RCTs) evaluating CCP vs control in adults hospitalized for COVID-19 who were not receiving mechanical ventilation at randomization. A combination of baseline characteristics, termed the treatment benefit index (TBI), was developed based on 2287 patients in COMPILE using a proportional odds model, with baseline characteristics selected via cross-validation. The TBI was externally validated on 4 external data sets: the Expanded Access Program (1896 participants), a study conducted under Emergency Use Authorization (210 participants), and 2 RCTs (with 80 and 309 participants). Exposure:Receipt of CCP. Main Outcomes and Measures:World Health Organization (WHO) 11-point ordinal COVID-19 clinical status scale and 2 derivatives of it (ie, WHO score of 7-10, indicating mechanical ventilation to death, and WHO score of 10, indicating death) at day 14 and day 28 after randomization. Day 14 WHO 11-point ordinal scale was used as the primary outcome to develop the TBI. Results:A total of 2287 patients were included in the derivation cohort, with a mean (SD) age of 60.3 (15.2) years and 815 (35.6%) women. The TBI provided a continuous gradation of benefit, and, for clinical utility, it was operationalized into groups of expected large clinical benefit (B1; 629 participants in the derivation cohort [27.5%]), moderate benefit (B2; 953 [41.7%]), and potential harm or no benefit (B3; 705 [30.8%]). Patients with preexisting conditions (diabetes, cardiovascular and pulmonary diseases), with blood type A or AB, and at an early COVID-19 stage (low baseline WHO scores) were expected to benefit most, while those without preexisting conditions and at more advanced stages of COVID-19 could potentially be harmed. In the derivation cohort, odds ratios for worse outcome, where smaller odds ratios indicate larger benefit from CCP, were 0.69 (95% credible interval [CrI], 0.48-1.06) for B1, 0.82 (95% CrI, 0.61-1.11) for B2, and 1.58 (95% CrI, 1.14-2.17) for B3. Testing on 4 external datasets supported the validation of the derived TBIs. Conclusions and Relevance:The findings of this study suggest that the CCP TBI is a simple tool that can quantify the relative benefit from CCP treatment for an individual patient hospitalized with COVID-19 that can be used to guide treatment recommendations. The TBI precision medicine approach could be especially helpful in a pandemic.
PMCID:8790670
PMID: 35076698
ISSN: 2574-3805
CID: 5153212
Multiple domain and multiple kernel outcome-weighted learning for estimating individualized treatment regimes
Xie, Shanghong; Tarpey, Thaddeus; Petkova, Eva; Ogden, R Todd
Individualized treatment rules (ITRs) recommend treatments that are tailored specifically according to each patient's own characteristics. It can be challenging to estimate optimal ITRs when there are many features, especially when these features have arisen from multiple data domains (e.g., demographics, clinical measurements, neuroimaging modalities). Considering data from complementary domains and using multiple similarity measures to capture the potential complex relationship between features and treatment can potentially improve the accuracy of assigning treatments. Outcome weighted learning (OWL) methods that are based on support vector machines using a predetermined single kernel function have previously been developed to estimate optimal ITRs. In this paper, we propose an approach to estimate optimal ITRs by exploiting multiple kernel functions to describe the similarity of features between subjects both within and across data domains within the OWL framework, as opposed to preselecting a single kernel function to be used for all features for all domains. Our method takes into account the heterogeneity of each data domain and combines multiple data domains optimally. Our learning process estimates optimal ITRs and also identifies the data domains that are most important for determining ITRs. This approach can thus be used to prioritize the collection of data from multiple domains, potentially reducing cost without sacrificing accuracy. The comparative advantage of our method is demonstrated by simulation studies and by an application to a randomized clinical trial for major depressive disorder that collected features from multiple data domains. Supplemental materials for this article are available online.
PMCID:10035569
PMID: 36970034
ISSN: 1061-8600
CID: 5724982
Optimal partitioning for the proportional hazards model
Govindarajulu, Usha; Tarpey, Thaddeus
This paper discusses methods for clustering a continuous covariate in a survival analysis model. The advantages of using a categorical covariate defined from discretizing a continuous covariate (via clustering) is (i) enhanced interpretability of the covariate's impact on survival and (ii) relaxing model assumptions that are usually required for survival models, such as the proportional hazards model. Simulations and an example are provided to illustrate the methods.
PMCID:9041949
PMID: 35707820
ISSN: 0266-4763
CID: 5724972
A single-index model with a surface-link for optimizing individualized dose rules
Park, Hyung; Petkova, Eva; Tarpey, Thaddeus; Ogden, R Todd
This paper focuses on the problem of modeling and estimating interaction effects between covariates and a continuous treatment variable on an outcome, using a single-index regression. The primary motivation is to estimate an optimal individualized dose rule and individualized treatment effects. To model possibly nonlinear interaction effects between patients' covariates and a continuous treatment variable, we employ a two-dimensional penalized spline regression on an index-treatment domain, where the index is defined as a linear projection of the covariates. The method is illustrated using two applications as well as simulation experiments. A unique contribution of this work is in the parsimonious (single-index) parametrization specifically defined for the interaction effect term.
PMCID:9306450
PMID: 35873662
ISSN: 1061-8600
CID: 5387832
Prospective individual patient data meta-analysis: Evaluating convalescent plasma for COVID-19
Goldfeld, Keith S; Wu, Danni; Tarpey, Thaddeus; Liu, Mengling; Wu, Yinxiang; Troxel, Andrea B; Petkova, Eva
As the world faced the devastation of the COVID-19 pandemic in late 2019 and early 2020, numerous clinical trials were initiated in many locations in an effort to establish the efficacy (or lack thereof) of potential treatments. As the pandemic has been shifting locations rapidly, individual studies have been at risk of failing to meet recruitment targets because of declining numbers of eligible patients with COVID-19 encountered at participating sites. It has become clear that it might take several more COVID-19 surges at the same location to achieve full enrollment and to find answers about what treatments are effective for this disease. This paper proposes an innovative approach for pooling patient-level data from multiple ongoing randomized clinical trials (RCTs) that have not been configured as a network of sites. We present the statistical analysis plan of a prospective individual patient data (IPD) meta-analysis (MA) from ongoing RCTs of convalescent plasma (CP). We employ an adaptive Bayesian approach for continuously monitoring the accumulating pooled data via posterior probabilities for safety, efficacy, and harm. Although we focus on RCTs for CP and address specific challenges related to CP treatment for COVID-19, the proposed framework is generally applicable to pooling data from RCTs for other therapies and disease settings in order to find answers in weeks or months, rather than years.
PMID: 34164838
ISSN: 1097-0258
CID: 4918612
A constrained single-index regression for estimating interactions between a treatment and covariates
Park, Hyung; Petkova, Eva; Tarpey, Thaddeus; Ogden, R Todd
We consider a single-index regression model, uniquely constrained to estimate interactions between a set of pretreatment covariates and a treatment variable on their effects on a response variable, in the context of analyzing data from randomized clinical trials. We represent interaction effect terms of the model through a set of treatment-specific flexible link functions on a linear combination of the covariates (a single index), subject to the constraint that the expected value given the covariates equals zero, while leaving the main effects of the covariates unspecified. We show that the proposed semiparametric estimator is consistent for the interaction term of the model, and that the efficiency of the estimator can be improved with an augmentation procedure. The proposed single-index regression provides a flexible and interpretable modeling approach to optimizing individualized treatment rules based on patients' data measured at baseline, as illustrated by simulation examples and an application to data from a depression clinical trial. This article is protected by copyright. All rights reserved.
PMID: 32573759
ISSN: 1541-0420
CID: 4493012
Extracting scalar measures from functional data with applications to placebo response
Tarpey, Thaddeus; Petkova, Eva; Ciarleglio, Adam; Ogden, Robert Todd
In controlled and observational studies, outcome measures are often observed longitudinally. Such data are difficult to compare among units directly because there is no natural ordering of curves. This is relevant not only in clinical trials, where typically the goal is to evaluate the relative efficacy of treatments on average, but also in the growing and increasingly important area of personalized medicine, where treatment decisions are optimized with respect to a relevant patient outcome. In personalized medicine, there are no methods for optimizing treatment decision rules using longitudinal outcomes, e.g., symptom trajectories, because of the lack of a natural ordering of curves. A typical practice is to summarize the longitudinal response by a scalar outcome that can then be compared across patients, treatments, etc. We describe some of the summaries that are in common use, especially in clinical trials. We consider a general summary measure (weighted average tangent slope) with weights that can be chosen to optimize specific inference depending on the application. We illustrate the methodology on a study of depression treatment, in which it is difficult to separate placebo effects from the specific effects of the antidepressant. We argue that this approach provides a better summary for estimating the benefits of an active treatment than traditional non-weighted averages.
PMCID:8313021
PMID: 34316322
ISSN: 1938-7989
CID: 4949372
A single-index model with multiple-links
Park, Hyung; Petkova, Eva; Tarpey, Thaddeus; Ogden, R Todd
In a regression model for treatment outcome in a randomized clinical trial, a treatment effect modifier is a covariate that has an interaction with the treatment variable, implying that the treatment efficacies vary across values of such a covariate. In this paper, we present a method for determining a composite variable from a set of baseline covariates, that can have a nonlinear association with the treatment outcome, and acts as a composite treatment effect modifier. We introduce a parsimonious generalization of the single-index models that targets the effect of the interaction between the treatment conditions and the vector of covariates on the outcome, a single-index model with multiple-links (SIMML) that estimates a single linear combination of the covariates (i.e., a single-index), with treatment-specific nonparametric link functions. The approach emphasizes a focus on the treatment-by-covariates interaction effects on the treatment outcome that are relevant for making optimal treatment decisions. Asymptotic results for estimator are obtained under possible model misspecification. A treatment decision rule based on the derived single-index is defined, and it is compared to other methods for estimating optimal treatment decision rules. An application to a clinical trial for the treatment of depression is presented.
PMCID:7441812
PMID: 32831459
ISSN: 0378-3758
CID: 4575092