Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:wilsoa02

Total Results:

60


Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63

Pourchet, Aldo; Copin, Richard; Mulvey, Matthew C; Shopsin, Bo; Mohr, Ian; Wilson, Angus C
Herpes simplex virus 1 (HSV-1) is a widespread pathogen that persists for life, replicating in surface tissues and establishing latency in peripheral ganglia. Increasingly, molecular studies of latency use cultured neuron models developed using recombinant viruses such as HSV-1 GFP-US11, a derivative of strain Patton expressing green fluorescent protein (GFP) fused to the viral US11 protein. Visible fluorescence follows viral DNA replication, providing a real time indicator of productive infection and reactivation. Patton was isolated in Houston, Texas, prior to 1973, and distributed to many laboratories. Although used extensively, the genomic structure and phylogenetic relationship to other strains is poorly known. We report that wild type Patton and the GFP-US11 recombinant contain the full complement of HSV-1 genes and differ within the unique regions at only eight nucleotides, changing only two amino acids. Although isolated in North America, Patton is most closely related to Asian viruses, including KOS63.
PMCID:5653468
PMID: 28957690
ISSN: 1096-0341
CID: 2717522

Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

Lutz, Gabriel; Jurak, Igor; Kim, Eui Tae; Kim, Ju Youn; Hackenberg, Michael; Leader, Andrew; Stoller, Michelle L; Fekete, Donna M; Weitzman, Matthew D; Coen, Donald M; Wilson, Angus C
Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/-crystallin enhancer binding factor 1 (deltaEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors.
PMCID:5580467
PMID: 28783105
ISSN: 1999-4915
CID: 2663802

Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons

Pourchet, Aldo; Modrek, Aram S; Placantonakis, Dimitris G; Mohr, Ian; Wilson, Angus C
Herpes simplex virus 1 (HSV-1) uses latency in peripheral ganglia to persist in its human host, however, recurrent reactivation from this reservoir can cause debilitating and potentially life-threatening disease. Most studies of latency use live-animal infection models, but these are complex, multilayered systems and can be difficult to manipulate. Infection of cultured primary neurons provides a powerful alternative, yielding important insights into host signaling pathways controlling latency. However, small animal models do not recapitulate all aspects of HSV-1 infection in humans and are limited in terms of the available molecular tools. To address this, we have developed a latency model based on human neurons differentiated in culture from an NIH-approved embryonic stem cell line. The resulting neurons are highly permissive for replication of wild-type HSV-1, but establish a non-productive infection state resembling latency when infected at low viral doses in the presence of the antivirals acyclovir and interferon-alpha. In this state, viral replication and expression of a late viral gene marker are not detected but there is an accumulation of the viral latency-associated transcript (LAT) RNA. After a six-day establishment period, antivirals can be removed and the infected cultures maintained for several weeks. Subsequent treatment with sodium butyrate induces reactivation and production of new infectious virus. Human neurons derived from stem cells provide the appropriate species context to study this exclusively human virus with the potential for more extensive manipulation of the progenitors and access to a wide range of preexisting molecular tools.
PMCID:5488658
PMID: 28594343
ISSN: 2076-0817
CID: 2590522

Immune Escape via a Transient Gene Expression Program Enables Productive Replication of a Latent Pathogen

Linderman, Jessica A; Kobayashi, Mariko; Rayannavar, Vinayak; Fak, John J; Darnell, Robert B; Chao, Moses V; Wilson, Angus C; Mohr, Ian
How type I and II interferons prevent periodic reemergence of latent pathogens in tissues of diverse cell types remains unknown. Using homogeneous neuron cultures latently infected with herpes simplex virus 1, we show that extrinsic type I or II interferon acts directly on neurons to induce unique gene expression signatures and inhibit the reactivation-specific burst of viral genome-wide transcription called phase I. Surprisingly, interferons suppressed reactivation only during a limited period early in phase I preceding productive virus growth. Sensitivity to type II interferon was selectively lost if viral ICP0, which normally accumulates later in phase I, was expressed before reactivation. Thus, interferons suppress reactivation by preventing initial expression of latent genomes but are ineffective once phase I viral proteins accumulate, limiting interferon action. This demonstrates that inducible reactivation from latency is only transiently sensitive to interferon. Moreover, it illustrates how latent pathogens escape host immune control to periodically replicate by rapidly deploying an interferon-resistant state.
PMCID:5340258
PMID: 28147283
ISSN: 2211-1247
CID: 2424422

Restarting Lytic Gene Transcription at the Onset of Herpes Simplex Virus Reactivation

Cliffe, Anna R; Wilson, Angus C
Herpes simplex virus type (HSV) establishes a latent reservoir in neurons of human peripheral nerves. In this quiescent state the viral genome persists as a circular, histone-associated episome and transcription of viral lytic-cycle genes is largely suppressed through epigenetic processes. Periodically latent virus undergoes reactivation whereby lytic genes are activated and viral replication occurs. In this GEM we review recent evidence that mechanisms governing the initial transcription of lytic genes are distinct from those of de novo infection and directly link reactivation to neuronal stress response pathways. We also discuss evidence that lytic cycle gene expression can be uncoupled from the full reactivation program, arguing for a less sharply bimodal definition of latency.
PMCID:5215350
PMID: 27807236
ISSN: 1098-5514
CID: 2296982

Expression of Herpes Simplex Virus 1 MicroRNAs in Cell Culture Models of Quiescent and Latent Infection

Jurak, Igor; Hackenberg, Michael; Kim, Ju Youn; Pesola, Jean M; Everett, Roger D; Preston, Chris M; Wilson, Angus C; Coen, Donald M
To facilitate studies of herpes simplex virus 1 latency, cell culture models of quiescent or latent infection have been developed. Using deep sequencing, we analyzed the expression of viral microRNAs (miRNAs) in two models employing human fibroblasts and one using rat neurons. In all cases, the expression patterns differed from that in productively infected cells, with the rat neuron pattern most closely resembling that found in latently infected human or mouse ganglia in vivo.
PMCID:3911564
PMID: 24307587
ISSN: 0022-538x
CID: 836682

Using homogeneous primary neuron cultures to study fundamental aspects of HSV-1 latency and reactivation

Kim, Ju Youn; Shiflett, Lora A; Linderman, Jessica A; Mohr, Ian; Wilson, Angus C
We describe a primary neuronal culture system suitable for molecular characterization of herpes simplex virus type 1 (HSV-1) infection, latency, and reactivation. While several alternative models are available, including infections of live animal and explanted ganglia, these are complicated by the presence of multiple cell types, including immune cells, and difficulties in manipulating the neuronal environment. The highly pure neuron culture system described here can be readily manipulated and is ideal for molecular studies that focus exclusively on the relationship between the virus and host neuron, the fundamental unit of latency. As such it allows for detailed investigations of both viral and neuronal factors involved in the establishment and maintenance of HSV-1 latency and in viral reactivation induced by defined stimuli.
PMID: 24671683
ISSN: 1064-3745
CID: 970092

A cultured affair: HSV latency and reactivation in neurons

Wilson, Angus C; Mohr, Ian
After replicating in surface epithelia, herpes simplex virus type-1 (HSV-1) enters the axonal terminals of peripheral neurons. The viral genome translocates to the nucleus, where it establishes a specialized infection known as latency, re-emerging periodically to seed new infections. Studies using cultured neuron models that faithfully recapitulate the molecular hallmarks of latency and reactivation defined in live animal models have provided fresh insight into the control of latency and connections to neuronal physiology. With this comes a growing appreciation for how the life cycles of HSV-1 and other herpesviruses are governed by key host pathways controlling metabolic homeostasis and cell identity.
PMCID:3989139
PMID: 22963857
ISSN: 0966-842x
CID: 182432

Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor

Kobayashi, Mariko; Wilson, Angus C; Chao, Moses V; Mohr, Ian
Latent herpes simplex virus-1 (HSV1) genomes in peripheral nerve ganglia periodically reactivate, initiating a gene expression program required for productive replication. Whether molecular cues detected by axons can be relayed to cell bodies and harnessed to regulate latent genome expression in neuronal nuclei is unknown. Using a neuron culture model, we found that inhibiting mTOR, depleting its regulatory subunit raptor, or inducing hypoxia all trigger reactivation. While persistent mTORC1 activation suppressed reactivation, a mutant 4E-BP (eIF4E-binding protein) translational repressor unresponsive to mTORC1 stimulated reactivation. Finally, inhibiting mTOR in axons induced reactivation. Thus, local changes in axonal mTOR signaling that control translation regulate latent HSV1 genomes in a spatially segregated compartment.
PMCID:3404381
PMID: 22802527
ISSN: 0890-9369
CID: 174034

A primary neuron culture system for the study of herpes simplex virus latency and reactivation

Kobayashi, Mariko; Kim, Ju-Youn; Camarena, Vladimir; Roehm, Pamela C; Chao, Moses V; Wilson, Angus C; Mohr, Ian
Herpes simplex virus type-1 (HSV-1) establishes a life-long latent infection in peripheral neurons. This latent reservoir is the source of recurrent reactivation events that ensure transmission and contribute to clinical disease. Current antivirals do not impact the latent reservoir and there are no vaccines. While the molecular details of lytic replication are well-characterized, mechanisms controlling latency in neurons remain elusive. Our present understanding of latency is derived from in vivo studies using small animal models, which have been indispensable for defining viral gene requirements and the role of immune responses. However, it is impossible to distinguish specific effects on the virus-neuron relationship from more general consequences of infection mediated by immune or non-neuronal support cells in live animals. In addition, animal experimentation is costly, time-consuming, and limited in terms of available options for manipulating host processes. To overcome these limitations, a neuron-only system is desperately needed that reproduces the in vivo characteristics of latency and reactivation but offers the benefits of tissue culture in terms of homogeneity and accessibility. Here we present an in vitro model utilizing cultured primary sympathetic neurons from rat superior cervical ganglia (SCG) (Figure 1) to study HSV-1 latency and reactivation that fits most if not all of the desired criteria. After eliminating non-neuronal cells, near-homogeneous TrkA(+) neuron cultures are infected with HSV-1 in the presence of acyclovir (ACV) to suppress lytic replication. Following ACV removal, non-productive HSV-1 infections that faithfully exhibit accepted hallmarks of latency are efficiently established. Notably, lytic mRNAs, proteins, and infectious virus become undetectable, even in the absence of selection, but latency-associated transcript (LAT) expression persists in neuronal nuclei. Viral genomes are maintained at an average copy number of 25 per neuron and can be induced to productively replicate by interfering with PI3-Kinase / Akt signaling or the simple withdrawal of nerve growth factor(1). A recombinant HSV-1 encoding EGFP fused to the viral lytic protein Us11 provides a functional, real-time marker for replication resulting from reactivation that is readily quantified. In addition to chemical treatments, genetic methodologies such as RNA-interference or gene delivery via lentiviral vectors can be successfully applied to the system permitting mechanistic studies that are very difficult, if not impossible, in animals. In summary, the SCG-based HSV-1 latency / reactivation system provides a powerful, necessary tool to unravel the molecular mechanisms controlling HSV1 latency and reactivation in neurons, a long standing puzzle in virology whose solution may offer fresh insights into developing new therapies that target the latent herpesvirus reservoir.
PMCID:3466666
PMID: 22491318
ISSN: 1940-087x
CID: 164363