Searched for: in-biosketch:yes
person:wollsc01
Reducing Ophthalmic Health Disparities Through Transfer Learning: A Novel Application to Overcome Data Inequality
Lee, TingFang; Wollstein, Gadi; Madu, Chisom T; Wronka, Andrew; Zheng, Lei; Zambrano, Ronald; Schuman, Joel S; Hu, Jiyuan
PURPOSE/UNASSIGNED:Race disparities in the healthcare system and the resulting inequality in clinical data among different races hinder the ability to generate equitable prediction results. This study aims to reduce healthcare disparities arising from data imbalance by leveraging advanced transfer learning (TL) methods. METHOD/UNASSIGNED:We examined the ophthalmic healthcare disparities at a population level using electronic medical records data from a study cohort (N = 785) receiving care at an academic institute. Regression-based TL models were usesd, transferring valuable information from the dominant racial group (White) to improve visual field mean deviation (MD) rate of change prediction particularly for data-disadvantaged African American (AA) and Asian racial groups. Prediction results of TL models were compared with two conventional approaches. RESULTS/UNASSIGNED:Disparities in socioeconomic status and baseline disease severity were observed among the AA and Asian racial groups. The TL approach achieved marked to comparable improvement in prediction accuracy compared to the two conventional approaches as evident by smaller mean absolute errors or mean square errors. TL identified distinct key features of visual field MD rate of change for each racial group. CONCLUSIONS/UNASSIGNED:The study introduces a novel application of TL that improved reliability of the analysis in comparison with conventional methods, especially in small sample size groups. This can improve assessment of healthcare disparity and subsequent remedy approach. TRANSLATIONAL RELEVANCE/UNASSIGNED:TL offers an equitable and efficient approach to mitigate healthcare disparities analysis by enhancing prediction performance for data-disadvantaged group.
PMCID:10697175
PMID: 38038606
ISSN: 2164-2591
CID: 5589882
Modeling Longitudinal Optical Coherence Tomography Images for Monitoring and Analysis of Glaucoma Progression
Fishbaugh, James; Zambrano, Ronald; Schuman, Joel S; Wollstein, Gadi; Vicory, Jared; Paniagua, Beatriz
Glaucoma causes progressive visual field deterioration and is the leading cause of blindness worldwide. Glaucomatous damage is irreversible and greatly impacts quality of life. Therefore, it is critically important to detect glaucoma early and closely monitor progression to preserve functional vision. Glaucoma is routinely monitored in the clinical setting using optical coherence tomography (OCT) for derived measures such as the thickness of important visual structures. There is not a consensus of what measures represent the most relevant biomarkers of glaucoma progression. Further, despite the increasing availability of longitudinal OCT data, a quantitative model of 3D structural change over time associated with glaucoma does not exist. In this paper we present an algorithm that will perform hierarchical geodesic modeling at the imaging level, considering 3D OCT images as observations of structural change over time. Hierarchical modeling includes subject-wise trajectories as geodesics in the space of diffeomorphisms and population level (glaucoma vs control) trajectories are also geodesics which explain subject-wise trajectories as deviations from the mean. Our preliminary experiments demonstrate a greater magnitude of structural change associated with glaucoma compared to normal aging. Our algorithm has the potential application in patient-specific monitoring and analysis of glaucoma progression as well as a statistical model of population trends and population variability.
PMCID:10798144
PMID: 38250733
CID: 5737522
Modeling Longitudinal Optical Coherence Tomography Images for Monitoring and Analysis of Glaucoma Progression
Fishbaugh, James; Zambrano, Ronald; Schuman, Joel S; Wollstein, Gadi; Vicory, Jared; Paniagua, Beatriz
Glaucoma causes progressive visual field deterioration and is the leading cause of blindness worldwide. Glaucomatous damage is irreversible and greatly impacts quality of life. Therefore, it is critically important to detect glaucoma early and closely monitor progression to preserve functional vision. Glaucoma is routinely monitored in the clinical setting using optical coherence tomography (OCT) for derived measures such as the thickness of important visual structures. There is not a consensus of what measures represent the most relevant biomarkers of glaucoma progression. Further, despite the increasing availability of longitudinal OCT data, a quantitative model of 3D structural change over time associated with glaucoma does not exist. In this paper we present an algorithm that will perform hierarchical geodesic modeling at the imaging level, considering 3D OCT images as observations of structural change over time. Hierarchical modeling includes subject-wise trajectories as geodesics in the space of diffeomorphisms and population level (glaucoma vs control) trajectories are also geodesics which explain subject-wise trajectories as deviations from the mean. Our preliminary experiments demonstrate a greater magnitude of structural change associated with glaucoma compared to normal aging. Our algorithm has the potential application in patient-specific monitoring and analysis of glaucoma progression as well as a statistical model of population trends and population variability.
PMCID:10798144
CID: 5624612
Can Glaucoma Suspect Data Help to Improve the Performance of Glaucoma Diagnosis?
Abbasi, Ashkan; Antony, Bhavna Josephine; Gowrisankaran, Sowjanya; Wollstein, Gadi; Schuman, Joel S; Ishikawa, Hiroshi
PURPOSE:The presence of imbalanced datasets in medical applications can negatively affect deep learning methods. This study aims to investigate how the performance of convolutional neural networks (CNNs) for glaucoma diagnosis can be improved by addressing imbalanced learning issues through utilizing glaucoma suspect samples, which are often excluded from studies because they are a mixture of healthy and preperimetric glaucomatous eyes, in a semi-supervised learning approach. METHODS:A baseline 3D CNN was developed and trained on a real-world glaucoma dataset, which is naturally imbalanced (like many other real-world medical datasets). Then, three methods, including reweighting samples, data resampling to form balanced batches, and semi-supervised learning on glaucoma suspect data were applied to practically assess their impacts on the performances of the trained methods. RESULTS:The proposed method achieved a mean accuracy of 95.24%, an F1 score of 97.42%, and an area under the curve of receiver operating characteristic (AUC ROC) of 95.64%, whereas the corresponding results for the traditional supervised training using weighted cross-entropy loss were 92.88%, 96.12%, and 92.72%, respectively. The obtained results show statistically significant improvements in all metrics. CONCLUSIONS:Exploiting glaucoma suspect eyes in a semi-supervised learning method coupled with resampling can improve glaucoma diagnosis performance by mitigating imbalanced learning issues. TRANSLATIONAL RELEVANCE:Clinical imbalanced datasets may negatively affect medical applications of deep learning. Utilizing data with uncertain diagnosis, such as glaucoma suspects, through a combination of semi-supervised learning and class-imbalanced learning strategies can partially address the problems of having limited data and learning on imbalanced datasets.
PMCID:10424152
PMID: 37555737
ISSN: 2164-2591
CID: 5594912
GABA decrease is associated with degraded neural specificity in the visual cortex of glaucoma patients
Bang, Ji Won; Parra, Carlos; Yu, Kevin; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C
Glaucoma is an age-related neurodegenerative disease of the visual system, affecting both the eye and the brain. Yet its underlying metabolic mechanisms and neurobehavioral relevance remain largely unclear. Here, using proton magnetic resonance spectroscopy and functional magnetic resonance imaging, we investigated the GABAergic and glutamatergic systems in the visual cortex of glaucoma patients, as well as neural specificity, which is shaped by GABA and glutamate signals and underlies efficient sensory and cognitive functions. Our study shows that among the older adults, both GABA and glutamate levels decrease with increasing glaucoma severity regardless of age. Further, our study shows that the reduction of GABA but not glutamate predicts the neural specificity. This association is independent of the impairments on the retina structure, age, and the gray matter volume of the visual cortex. Our results suggest that glaucoma-specific decline of GABA undermines neural specificity in the visual cortex and that targeting GABA could improve the neural specificity in glaucoma.
PMCID:10310759
PMID: 37386293
ISSN: 2399-3642
CID: 5538742
Segmentation-Free OCT-Volume-Based Deep Learning Model Improves Pointwise Visual Field Sensitivity Estimation
Chen, Zhiqi; Shemuelian, Eitan; Wollstein, Gadi; Wang, Yao; Ishikawa, Hiroshi; Schuman, Joel S
PURPOSE/UNASSIGNED:The structural changes measured by optical coherence tomography (OCT) are related to functional changes in visual fields (VFs). This study aims to accurately assess the structure-function relationship and overcome the challenges brought by the minimal measurable level (floor effect) of segmentation-dependent OCT measurements commonly used in prior studies. METHODS/UNASSIGNED:We developed a deep learning model to estimate the functional performance directly from three-dimensional (3D) OCT volumes and compared it to the model trained with segmentation-dependent two-dimensional (2D) OCT thickness maps. Moreover, we proposed a gradient loss to utilize the spatial information of VFs. RESULTS/UNASSIGNED:Our 3D model was significantly better than the 2D model both globally and pointwise regarding both mean absolute error (MAE = 3.11 + 3.54 vs. 3.47 ± 3.75 dB, P < 0.001) and Pearson's correlation coefficient (0.80 vs. 0.75, P < 0.001). On a subset of test data with floor effects, the 3D model showed less influence from floor effects than the 2D model (MAE = 5.24 ± 3.99 vs. 6.34 ± 4.58 dB, P < 0.001, and correlation 0.83 vs. 0.74, P < 0.001). The gradient loss improved the estimation error for low-sensitivity values. Furthermore, our 3D model outperformed all prior studies. CONCLUSIONS/UNASSIGNED:By providing a better quantitative model to encapsulate the structure-function relationship more accurately, our method may help deriving VF test surrogates. TRANSLATIONAL RELEVANCE/UNASSIGNED:DL-based VF surrogates not only benefit patients by reducing the testing time of VFs but also allow clinicians to make clinical judgments without the inherent limitations of VFs.
PMCID:10318595
PMID: 37382575
ISSN: 2164-2591
CID: 5538692
Age-Related Differences in Ocular Features of a Naturalistic Free-Ranging Population of Rhesus Macaques
Fernandes, Arthur G; Alexopoulos, Palaiologos; Burgos-Rodriguez, Armando; Martinez, Melween I; Ghassibi, Mark; Leskov, Ilya; Brent, Lauren J N; Snyder-Mackler, Noah; Danias, John; Wollstein, Gadi; Higham, James P; Melin, Amanda D
PURPOSE:Rhesus macaques (Macaca mulatta) are the premier nonhuman primate model for studying human health and disease. We investigated if age was associated with clinically relevant ocular features in a large cohort of free-ranging rhesus macaques from Cayo Santiago, Puerto Rico. METHODS:We evaluated 120 rhesus macaques (73 males, 47 females) from 0 to 29 years old (mean ± SD: 12.6 ± 6.4) from September to December 2021. The ophthalmic evaluation included intraocular pressure (IOP) assessment, corneal pachymetry, biomicroscopy, A-scan biometry, automated refraction, and fundus photography after pupil dilation. The associations of age with the outcomes were investigated through multilevel mixed-effects models adjusted for sex and weight. RESULTS:On average, IOP, pachymetry, axial length, and automated refraction spherical equivalent were 18.37 ± 4.68 mmHg, 474.43 ± 32.21 µm, 19.49 ± 1.24 mm, and 0.30 ± 1.70 diopters (D), respectively. Age was significantly associated with pachymetry (β coefficient = -1.20; 95% confidence interval [CI], -2.27 to -0.14; P = 0.026), axial length (β coefficient = 0.03; 95% CI, 0.01 to 0.05; P = 0.002), and spherical equivalent (β coefficient = -0.12; 95% CI, -0.22 to -0.02; P = 0.015). No association was detected between age and IOP. The prevalence of cataracts in either eye was 10.83% (95% CI, 6.34-17.89) and was significantly associated with age (odds ratio [OR] = 1.20; 95% CI, 1.06-1.36; P = 0.004). Retinal drusen in either eye was observed in 15.00% (95% CI, 9.60-22.68) of animals, which was also significantly associated with age (OR = 1.14; 95% CI, 1.02-1.27; P = 0.020). CONCLUSIONS:Rhesus macaques exhibit age-related ocular associations similar to those observed in human aging, including decreased corneal thickness, increased axial length, myopic shift, and higher prevalence of cataract and retinal drusen.
PMCID:10241312
PMID: 37261386
ISSN: 1552-5783
CID: 5541582
Under Pressure: Lamina Cribrosa Pore Path Tortuosity in Response to Acute Pressure Modulation
Alexopoulos, Palaiologos; Glidai, Yoav; Ghassabi, Zeinab; Wang, Bo; Tayebi, Behnam; Vellappally, Anse; Wu, Mengfei; Liu, Mengling; Lucy-Jones, Katie; Zambrano, Ronald; Ishikawa, Hiroshi; Schuman, Joel S; Wollstein, Gadi
PURPOSE/UNASSIGNED:Lamina cribrosa (LC) deformation is hypothesized to play a major role in glaucoma pathogenesis. The purpose of this study was to determine in vivo how varying intraocular pressure (IOP) under fixed intracranial pressure (ICP), and vice versa, deforms the pore paths throughout the LC volume. METHODS/UNASSIGNED:Spectral-domain optical coherence tomography scans of the optic nerve head were acquired from healthy adult rhesus monkeys under different pressures. IOP and ICP were controlled with gravity-based perfusion systems into the anterior chamber and lateral ventricle, respectively. IOP and ICP were modulated from baseline to high (19-30 mmHg) and highest (35-50 mmHg) levels while maintaining a fixed ICP of 8 to 12 mmHg and IOP of 15 mmHg, respectively. After three-dimensional registration and segmentation, the paths of pores visible in all settings were tracked based on their geometric centroids. Pore path tortuosity was defined as the measured distance divided by the minimal distance between the most anterior and posterior centroids. RESULTS/UNASSIGNED:The median pore tortuosity at baseline varied among the eyes (range, 1.16-1.68). For the IOP effect under fixed ICP (six eyes, five animals), two eyes showed statistically significant increased tortuosity and one showed a decrease (P < 0.05, mixed-effects model). No significant change was detected in three eyes. When modulating ICP under fixed IOP (five eyes, four animals), a similar response pattern was detected. CONCLUSIONS/UNASSIGNED:Baseline pore tortuosity and the response to acute pressure increase vary substantially across eyes. TRANSLATIONAL RELEVANCE/UNASSIGNED:LC pore path tortuosity could be associated with glaucoma susceptibility.
PMCID:10082387
PMID: 37017959
ISSN: 2164-2591
CID: 5463732
Automated 360-degree goniophotography with the NIDEK Gonioscope GS-1 for glaucoma
Madu, Chisom T; Phelps, Taylor; Schuman, Joel S; Zambrano, Ronald; Lee, Ting-Fang; Panarelli, Joseph; Al-Aswad, Lama; Wollstein, Gadi
This study was registered with ClinicalTrials.gov (ID: NCT03715231). A total of 20 participants (37 eyes) who were 18 or older and had glaucoma or were glaucoma suspects were enrolled from the NYU Langone Eye Center and Bellevue Hospital. During their usual ophthalmology visit, they were consented for the study and underwent 360-degree goniophotography using the NIDEK Gonioscope GS-1. Afterwards, the three ophthalmologists separately examined the images obtained and determined the status of the iridocorneal angle in four quadrants using the Shaffer grading system. Physicians were masked to patient names and diagnoses. Inter-observer reproducibility was determined using Fleiss' kappa statistics. The interobserver reliability using Fleiss' statistics was shown to be significant between three glaucoma specialists with fair overall agreement (Fleiss' kappa: 0.266, p < .0001) in the interpretation of 360-degree goniophotos. Automated 360-degree goniophotography using the NIDEK Gonioscope GS-1 have quality such that they are interpreted similarly by independent expert observers. This indicates that angle investigation may be performed using this automated device and that interpretation by expert observers is likely to be similar. Images produced from automated 360-degree goniophotography using the NIDEK Gonioscope GS-1 are similarly interpreted amongst glaucoma specialists, thus supporting use of this technique to document and assess the anterior chamber angle in patients with, or suspected of, glaucoma and iridocorneal angle abnormalities.
PMCID:9990915
PMID: 36881575
ISSN: 1932-6203
CID: 5432702
Normative Data and Conversion Equation for Spectral-Domain Optical Coherence Tomography in an International Healthy Control Cohort
Kenney, Rachel; Liu, Mengling; Hasanaj, Lisena; Joseph, Binu; Al-Hassan, Abdullah A; Balk, Lisanne; Behbehani, Raed; Brandt, Alexander U; Calabresi, Peter A; Frohman, Elliot M; Frohman, Teresa; Havla, Joachim; Hemmer, Bernhard; Jiang, Hong; Knier, Benjamin; Korn, Thomas; Leocani, Letizia; MartÃnez-Lapiscina, Elena H; Papadopoulou, Athina; Paul, Friedemann; Petzold, Axel; Pisa, Marco; Villoslada, Pablo; Zimmermann, Hanna; Ishikawa, Hiroshi; Schuman, Joel S; Wollstein, Gadi; Chen, Yu; Saidha, Shiv; Thorpe, Lorna E; Galetta, Steven L; Balcer, Laura J
BACKGROUND:Spectral-domain (SD-) optical coherence tomography (OCT) can reliably measure axonal (peripapillary retinal nerve fiber layer [pRNFL]) and neuronal (macular ganglion cell + inner plexiform layer [GCIPL]) thinning in the retina. Measurements from 2 commonly used SD-OCT devices are often pooled together in multiple sclerosis (MS) studies and clinical trials despite software and segmentation algorithm differences; however, individual pRNFL and GCIPL thickness measurements are not interchangeable between devices. In some circumstances, such as in the absence of a consistent OCT segmentation algorithm across platforms, a conversion equation to transform measurements between devices may be useful to facilitate pooling of data. The availability of normative data for SD-OCT measurements is limited by the lack of a large representative world-wide sample across various ages and ethnicities. Larger international studies that evaluate the effects of age, sex, and race/ethnicity on SD-OCT measurements in healthy control participants are needed to provide normative values that reflect these demographic subgroups to provide comparisons to MS retinal degeneration. METHODS:Participants were part of an 11-site collaboration within the International Multiple Sclerosis Visual System (IMSVISUAL) consortium. SD-OCT was performed by a trained technician for healthy control subjects using Spectralis or Cirrus SD-OCT devices. Peripapillary pRNFL and GCIPL thicknesses were measured on one or both devices. Automated segmentation protocols, in conjunction with manual inspection and correction of lines delineating retinal layers, were used. A conversion equation was developed using structural equation modeling, accounting for clustering, with healthy control data from one site where participants were scanned on both devices on the same day. Normative values were evaluated, with the entire cohort, for pRNFL and GCIPL thicknesses for each decade of age, by sex, and across racial groups using generalized estimating equation (GEE) models, accounting for clustering and adjusting for within-patient, intereye correlations. Change-point analyses were performed to determine at what age pRNFL and GCIPL thicknesses exhibit accelerated rates of decline. RESULTS:The healthy control cohort (n = 546) was 54% male and had a wide distribution of ages, ranging from 18 to 87 years, with a mean (SD) age of 39.3 (14.6) years. Based on 346 control participants at a single site, the conversion equation for pRNFL was Cirrus = -5.0 + (1.0 × Spectralis global value). Based on 228 controls, the equation for GCIPL was Cirrus = -4.5 + (0.9 × Spectralis global value). Standard error was 0.02 for both equations. After the age of 40 years, there was a decline of -2.4 μm per decade in pRNFL thickness ( P < 0.001, GEE models adjusting for sex, race, and country) and -1.4 μm per decade in GCIPL thickness ( P < 0.001). There was a small difference in pRNFL thickness based on sex, with female participants having slightly higher thickness (2.6 μm, P = 0.003). There was no association between GCIPL thickness and sex. Likewise, there was no association between race/ethnicity and pRNFL or GCIPL thicknesses. CONCLUSIONS:A conversion factor may be required when using data that are derived between different SD-OCT platforms in clinical trials and observational studies; this is particularly true for smaller cross-sectional studies or when a consistent segmentation algorithm is not available. The above conversion equations can be used when pooling data from Spectralis and Cirrus SD-OCT devices for pRNFL and GCIPL thicknesses. A faster decline in retinal thickness may occur after the age of 40 years, even in the absence of significant differences across racial groups.
PMID: 36049213
ISSN: 1536-5166
CID: 5337812