Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:pc92

Total Results:

506


Nanomechanical Assessment of Bone Surrounding Implants Loaded for 3 Years in a Canine Experimental Model

Anchieta, Rodolfo B; Guimaraes, Marcia V M; Suzuki, Marcelo; Tovar, Nick; Bonfante, Estevam A; Atria, Pablo; Coelho, Paulo G
PURPOSE: This work evaluated the nanomechanical properties of bone surrounding submerged and immediately loaded implants after 3 years in vivo. It was hypothesized that the nanomechanical properties of bone would markedly increase in immediately and functionally loaded implants compared with submerged implants. MATERIALS AND METHODS: The second, third, and fourth right premolars and the first molar of 10 adult Doberman dogs were extracted. After 6 months, 4 implants were placed in 1 side of the mandible. The mesial implant received a cover screw and remained unloaded. The remaining 3 implants received fixed prostheses within 48 hours after surgery that remained in occlusal function for 3 years. After sacrifice, the bone was prepared for histologic and nanoindentation analysis. Nanoindentation was carried out under wet conditions on bone areas within the plateaus. Indentations (n = 30 per histologic section) were performed with a maximum load of 300 muN (loading rate, 60 muN per second) followed by a holding and unloading time of 10 and 2 seconds, respectively. Elastic modulus (E) and hardness (H) were computed in giga-pascals. The amount of bone-to-implant contact (BIC) also was evaluated. RESULTS: The E and H values for cortical bone regions were higher than those for trabecular bone regardless of load condition, but this difference was not statistically significant (P > .05). The E and H values were higher for loaded implants than for submerged implants (P < .05) for cortical and trabecular bone. For the same load condition, the E and H values for cortical and trabecular bone were not statistically different (P > .05). The loaded and submerged implants presented BIC values (mean +/- standard deviation) of 57.4 +/- 12.1% and 62 +/- 7.5%, respectively (P > .05). CONCLUSION: The E and H values of bone surrounding dental implants, measured by nanoindentation, were higher for immediately loaded than for submerged implants.
PMID: 28893541
ISSN: 1531-5053
CID: 2701892

Void and gap evaluation using microcomputed tomography of different fiber post cementation techniques

Caceres, Eduardo A; Sampaio, Camila S; Atria, Pablo J; Moura, Helora; Giannini, Marcelo; Coelho, Paulo G; Hirata, Ronaldo
STATEMENT OF PROBLEM: Few studies have investigated the voids and gaps produced during the cementation of fiber posts using different techniques. PURPOSE: The purpose of this study was to evaluate and quantify void and gap area formations of different fiber post cementation techniques using microcomputed tomography (muCT). MATERIAL AND METHODS: Standardized endodontically treated acrylic resin roots (N=24) were divided into 4 groups (n=6) according to different fiber posts cemented with the resin cement (FB); fiber posts relined with composite resin followed by cementation (FBR); fiber posts cemented using an ultrasonic device (FBU); and fiber posts relined with composite resin and cemented using an ultrasonic device (FBRU). Each specimen was scanned twice using micro-computed tomography (muCT; empty root, followed by after fiber post cementation). Digital imaging and communications in medicine (DICOM) files were transferred into 3-dimensional (3D) reconstruction software for analysis. Void volume in the cementation system and gap area formation were evaluated; quantitative and qualitative analyses were performed. The data were analyzed using 2-way ANOVA and the Tukey honest significant difference post hoc test (alpha=.05). RESULTS: FBR showed a lower percentage of voids than obtained for FB (P<.05). Groups FB, FBU, and FBRU did not show significant difference in void formation (P>.05). No significant differences were found in gap area formations among the experimental groups (P>.05). CONCLUSIONS: The use of a composite resin to reline the fiber post significantly decreased the void formation in the cementation procedure when no ultrasonic device was used. The use of an ultrasonic device did not decrease the percentage of void or gap formation for any technique evaluated.
PMID: 28461048
ISSN: 1097-6841
CID: 2547022

In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models

Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi
PURPOSE: The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. METHODS: Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. RESULTS: Fatigue testing showed significantly greater reliability for IN than EX (p<0.001). Fatigue crack initiation was primarily observed at implant fixture platforms. FEA demonstrated that crack lines of both implant systems in vitro were observed in the same direction as displacement vectors of the implant fixtures in silico. CONCLUSIONS: In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure.
PMID: 28427837
ISSN: 2212-4632
CID: 2532892

Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype

Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P
PURPOSE: A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. MATERIALS AND METHODS: Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30 degrees angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. RESULTS: Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. CONCLUSION: The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic abutment components failed, supporting the research hypothesis with a reliability similar to that of all-metal abutment fixture systems. A lithium disilcate abutment with a Ti alloy sleeve in combination with an all-ceramic crown should be expected to function clinically in a satisfactory manner.
PMID: 26916603
ISSN: 1532-849x
CID: 1965692

Influence of platform diameter in the reliability and failure mode of extra-short dental implants

Bordin, Dimorvan; Bergamo, Edmara T P; Bonfante, Estevam A; Fardin, Vinicius P; Coelho, Paulo G
PURPOSE: To evaluate the influence of implant diameter in the reliability and failure mode of extra-short dental implants. MATERIALS AND METHODS: Sixty-three extra-short implants (5mm-length) were allocated into three groups according to platform diameter: O4.0-mm, O5.0-mm, and O6.0-mm (21 per group). Identical abutments were torqued to the implants and standardized crowns cemented. Three samples of each group were subjected to single-load to failure (SLF) to allow the design of the step-stress profiles, and the remaining 18 were subjected to step-stress accelerated life-testing (SSALT) in water. The use level probability Weibull curves, and the reliability (probability of survival) for a mission of 100,000 cycles at 100MPa, 200MPa, and 300MPa were calculated. Failed samples were characterized in scanning electron microscopy for fractographic inspection. RESULTS: No significant difference was observed for reliability regarding implant diameter for all loading missions. At 100MPa load, all groups showed reliability higher than 99%. A significant decreased reliability was observed for all groups when 200 and 300MPa missions were simulated, regardless of implant diameter. At 300MPa load, the reliability was 0%, 0%, and 5.24%, for O4.0mm, O5.0mm, and O6.0mm, respectively. The mean beta (beta) values were lower than 0.55 indicating that failures were most likely influenced by materials strength, rather than damage accumulation. The O6.0mm implant showed significantly higher characteristic stress (eta = 1,100.91MPa) than O4.0mm (1,030.25MPa) and O5.0mm implant (eta = 1,012.97MPa). Weibull modulus for O6.0-mm implant was m = 7.41, m = 14.65 for O4.0mm, and m = 11.64 for O5.0mm. The chief failure mode was abutment fracture in all groups. CONCLUSIONS: The implant diameter did not influence the reliability and failure mode of 5mm extra-short implants.
PMID: 29032313
ISSN: 1878-0180
CID: 2742962

Dental Shade Guide Variability for Hues B, C, and D Using Cross-Polarized Photography

Sampaio, Camila S; Gurrea, Jon; Gurrea, Marta; Bruguera, August; Atria, Pablo J; Janal, Malvin; Bonfante, Estevam A; Coelho, Paulo G; Hirata, Ronaldo
This study evaluated the color variability of hues B, C, and D between the VITA Classical shade guide (Vita Zahnfabrik) and four other VITA-coded ceramic shade guides using a digital camera (Canon EOS 60D) and computer software (Adobe Photoshop CC). A cross-polarizing filter was used to standardize external light sources influencing color match. A total of 275 pictures were taken, 5 per shade tab, for 11 shades (B1, B2, B3, B4, C1, C2, C3, C4, D2, D3, and D4), from the following shade guides: VITA Classical (control); IPS e.max Ceram (Ivoclar Vivadent); IPS d.SIGN (Ivoclar Vivadent); Initial ZI (GC); and Creation CC (Creation Willi Geller). Pictures were evaluated using Adobe Photoshop CC for standardization of hue, chroma, and value between shade tabs. The VITA-coded shade guides evaluated here showed an overall unmatched shade in all their tabs when compared to the control, suggesting that shade selection should be made with the corresponding manufacturer guide of the ceramic intended for the final restoration.
PMID: 29677224
ISSN: 1945-3388
CID: 3057462

Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatment: In vivo evaluation and comparison in a cranial bone sheep model

Torroni, Andrea; Xiang, Chongchen; Witek, Lukasz; Rodriguez, Eduardo D; Coelho, Paulo G; Gupta, Nikhil
PURPOSE: Orthopedic and maxillofacial bone fractures are routinely treated by titanium internal fixation, which may be prone to exposure, infection or intolerance. Magnesium (Mg) and its alloys represent promising alternatives to produce biodegradable osteosynthesis devices, with biocompatibility and, specifically, hydrogen gas production during the degradation process, being the main drawback. Aim of this study is to test and compare biocompatibility, degradation rate and physiscochemical properties of two Mg-alloys to identify which one possesses the most suitable characteristics to be used as resorbable hardware in load-bearing fracture sites. MATERIALS AND METHODS: As-cast (WE43) and T5 Mg-alloys were tested for biocompatibility, physical, mechanical and degradation properties. Microstructure was assessed by optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS); mechanical properties were tested utilizing quasi-static compression and failure analysis. Locoregional biocompatibility was tested by sub-periosteal implantation on the fronto-nasal region of large-animal model (sheep): regional immunoreaction and metal accumulation was analyzed by LA-ICP of tributary lymph-nodes, local reactions were analyzed through histological preparation including bone, implant and surrounding soft tissue. RESULTS: Mechanically, T5 alloy showed improvement in strength compared to the as-cast. Lymph-node Mg accumulation depicted no differences between control (no implant) and study animals. Both alloys showed good biocompatibility and osteogenesis-promoting properties. CONCLUSION: This study demonstrated excellent biocompatibility and osteogenesis-promoting capabilities of the tested alloys, providing a platform for further studies to test them in a maxillofacial fracture setting. T-5 alloy displayed more stability and decreased degradation rate than the as-cast.
PMID: 29089254
ISSN: 1878-4119
CID: 2765892

In Vivo Evaluation of Dual Acid-Etched and Grit-Blasted/Acid-Etched Implants With Identical Macrogeometry in High-Density Bone

Jinno, Yohei; Jimbo, Ryo; Tovar, Nick; Teixeira, Hellen S; Witek, Lukasz; Coelho, Paulo G
PURPOSE: Based on the current evidence, the effect of implant macrogeometry has a significant influence on osseointegration. Thus, this study evaluated histomorphometrically and histologically the bone response to acid-etched in comparison to grit-blasted/acid-etched (GB) and machined control (C) surfaced implants possessing identical macrogeometry placed in high-density bone. MATERIALS AND METHODS: Implant surface topography of the 3 different surfaced implants has previously been characterized. The macrogeometry of the implants were conical, and healing chambers were created in the cortical regions. The 3 groups were placed in the external mandibular body of adult male sheep (n = 5). After 6 weeks in vivo, all samples were retrieved for histologic observation and histomorphometry (eg, bone-to-implant contact [BIC] and bone area fraction occupancy [BAFO]). RESULTS: No statistical difference was observed for BIC and for BAFO, although there was a tendency that the mean values for BAFO was higher for the textured surface groups. CONCLUSIONS: It is suggested that the effect of surface topography is minimal in high-density bone and osseointegration seemed to be macrogeometry dependent.
PMID: 29064857
ISSN: 1538-2982
CID: 2757162

Exosomes Mediate Epithelium-Mesenchyme Crosstalk in Organ Development

Jiang, Nan; Xiang, Lusai; He, Ling; Yang, Guodong; Zheng, Jinxuan; Wang, Chenglin; Zhang, Yimei; Wang, Sainan; Zhou, Yue; Sheu, Tzong-Jen; Wu, Jiaqian; Chen, Kenian; Coelho, Paulo G; Tovar, Nicky M; Kim, Shin Hye; Chen, Mo; Zhou, Yan-Heng; Mao, Jeremy J
Organ development requires complex signaling by cells in different tissues. Epithelium and mesenchyme interactions are crucial for the development of skin, hair follicles, kidney, lungs, prostate, major glands, and teeth. Despite myriad literature on cell-cell interactions and ligand-receptor binding, the roles of extracellular vesicles in epithelium-mesenchyme interactions during organogenesis are poorly understood. Here, we discovered that approximately 100 nm exosomes were secreted by the epithelium and mesenchyme of a developing tooth organ and diffused through the basement membrane. Exosomes were entocytosed by epithelium or mesenchyme cells with preference by reciprocal cells rather than self-uptake. Exosomes reciprocally evoked cell differentiation and matrix synthesis: epithelium exosomes induce mesenchyme cells to produce dentin sialoprotein and undergo mineralization, whereas mesenchyme exosomes induce epithelium cells to produce basement membrane components, ameloblastin and amelogenenin. Attenuated exosomal secretion by Rab27a/b knockdown or GW4869 disrupted the basement membrane and reduced enamel and dentin production in organ culture and reduced matrix synthesis and the size of the cervical loop, which harbors epithelium stem cells, in Rab27aash/ash mutant mice. We then profiled exosomal constituents including miRNAs and peptides and further crossed all epithelium exosomal miRNAs with literature-known miRNA Wnt regulators. Epithelium exosome-derived miR135a activated Wnt/beta-catenin signaling and escalated mesenchymal production of dentin matrix proteins, partially reversible by Antago-miR135a attenuation. Our results suggest that exosomes may mediate epithelium-mesenchyme crosstalk in organ development, suggesting that these vesicles and/or the molecular contents they are transporting may be interventional targets for treatment of diseases or regeneration of tissues.
PMCID:5634743
PMID: 28727410
ISSN: 1936-086x
CID: 2676032

Resin composite repair for implant-supported crowns

Bonfante, Estevam A; Suzuki, Marcelo; Hirata, Ronaldo; Bonfante, Gerson; Fardin, Vinicius P; Coelho, Paulo G
This study evaluated the reliability of implant-supported crowns repaired with resin composites. Fifty-four titanium abutments were divided in three groups (n = 18 each) to support resin nanoceramic molar crowns, as follows: (LU) (Lava Ultimate, 3M ESPE); LU repaired with either a direct or an indirect resin composite. Samples were subjected to mouth-motion accelerated-life testing in water (n = 18). Cumulative damage with a use stress of 300 N was used to plot Weibull curves for group comparison. Reliability was calculated for a mission of 100,000 cycles at 400 N load. Beta values were 0.83 for LU, 0.31 and 0.27 for LU repaired with Filtek and Ceramage, respectively. Weibull modulus for LU was 9.5 and eta = 1047 N, m = 6.85, and eta = 1002 N for LU repaired with Ceramage, and m = 4.65 and eta = 766 N for LU repaired with Filtek (p < 0.10 between LU and LU repaired with Filtek). Reliability at 400 N was 100% for both LU and LU repaired with Ceramage which were significantly higher than LU Filtek repair (32%). LU restored crowns failed cohesively. Fractures were confined within the restored material, and detailed fractography is presented. The performance of resin nanoceramic material repaired with an indirect composite was maintained after accelerated-life testing compared to unrepaired controls. (c) 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.
PMID: 27098440
ISSN: 1552-4981
CID: 2080332