Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:boekej01

Total Results:

489


Mobile interspersed repeats are major structural variants in the human genome

Huang, Cheng Ran Lisa; Schneider, Anna M; Lu, Yunqi; Niranjan, Tejasvi; Shen, Peilin; Robinson, Matoya A; Steranka, Jared P; Valle, David; Civin, Curt I; Wang, Tao; Wheelan, Sarah J; Ji, Hongkai; Boeke, Jef D; Burns, Kathleen H
Characterizing structural variants in the human genome is of great importance, but a genome wide analysis to detect interspersed repeats has not been done. Thus, the degree to which mobile DNAs contribute to genetic diversity, heritable disease, and oncogenesis remains speculative. We perform transposon insertion profiling by microarray (TIP-chip) to map human L1(Ta) retrotransposons (LINE-1 s) genome-wide. This identified numerous novel human L1(Ta) insertional polymorphisms with highly variant allelic frequencies. We also explored TIP-chip's usefulness to identify candidate alleles associated with different phenotypes in clinical cohorts. Our data suggest that the occurrence of new insertions is twice as high as previously estimated, and that these repeats are under-recognized as sources of human genomic and phenotypic diversity. We have just begun to probe the universe of human L1(Ta) polymorphisms, and as TIP-chip is applied to other insertions such as Alu SINEs, it will expand the catalog of genomic variants even further.
PMCID:2943426
PMID: 20602999
ISSN: 0092-8674
CID: 571852

Sir2 products and activities

Schramm, Vern L.; Boeke, Jef D.; Sauve, Anthony; Celic, Ivana
BIOSIS:PREV201000457322
ISSN: 0098-1133
CID: 616632

CLONEQC: lightweight sequence verification for synthetic biology

Lee, Pablo A; Dymond, Jessica S; Scheifele, Lisa Z; Richardson, Sarah M; Foelber, Katrina J; Boeke, Jef D; Bader, Joel S
Synthetic biology projects aim to produce physical DNA that matches a designed target sequence. Chemically synthesized oligomers are generally used as the starting point for building larger and larger sequences. Due to the error rate of chemical synthesis, these oligomers can have many differences from the target sequence. As oligomers are joined together to make larger and larger synthetic intermediates, it becomes essential to perform quality control to eliminate intermediates with errors and retain only those DNA molecules that are error free with respect to the target. This step is often performed by transforming bacteria with synthetic DNA and sequencing colonies until a clone with a perfect sequence is identified. Here we present CloneQC, a lightweight software pipeline available as a free web server and as source code that performs quality control on sequenced clones. Input to the server is a list of desired sequences and forward and reverse reads for each clone. The server generates summary statistics (error rates and success rates target-by-target) and a detailed report of perfect clones. This software will be useful to laboratories conducting in-house DNA synthesis and is available at http://cloneqc.thruhere.net/ and as Berkeley Software Distribution (BSD) licensed source.
PMCID:2860120
PMID: 20211841
ISSN: 0305-1048
CID: 571872

GeneDesign 3.0 is an updated synthetic biology toolkit

Richardson, Sarah M; Nunley, Paul W; Yarrington, Robert M; Boeke, Jef D; Bader, Joel S
GeneDesign is a set of web applications that provides public access to a nucleotide manipulation pipeline for synthetic biology. The server is public and freely accessible, and the source is available for download under the New BSD License. Since GeneDesign was published and made publicly available 3 years ago, we have made its code base more efficient, added several algorithms and modules, updated the restriction enzyme library, added batch processing capabilities, and added several command line modules, all of which we briefly describe here.
PMCID:2860129
PMID: 20211837
ISSN: 0305-1048
CID: 571882

A microarray-based genetic screen for yeast chronological aging factors

Matecic, Mirela; Smith, Daniel L; Pan, Xuewen; Maqani, Nazif; Bekiranov, Stefan; Boeke, Jef D; Smith, Jeffrey S
Model organisms have played an important role in the elucidation of multiple genes and cellular processes that regulate aging. In this study we utilized the budding yeast, Saccharomyces cerevisiae, in a large-scale screen for genes that function in the regulation of chronological lifespan, which is defined by the number of days that non-dividing cells remain viable. A pooled collection of viable haploid gene deletion mutants, each tagged with unique identifying DNA "bar-code" sequences was chronologically aged in liquid culture. Viable mutants in the aging population were selected at several time points and then detected using a microarray DNA hybridization technique that quantifies abundance of the barcode tags. Multiple short- and long-lived mutants were identified using this approach. Among the confirmed short-lived mutants were those defective for autophagy, indicating a key requirement for the recycling of cellular organelles in longevity. Defects in autophagy also prevented lifespan extension induced by limitation of amino acids in the growth media. Among the confirmed long-lived mutants were those defective in the highly conserved de novo purine biosynthesis pathway (the ADE genes), which ultimately produces IMP and AMP. Blocking this pathway extended lifespan to the same degree as calorie (glucose) restriction. A recently discovered cell-extrinsic mechanism of chronological aging involving acetic acid secretion and toxicity was suppressed in a long-lived ade4Delta mutant and exacerbated by a short-lived atg16Delta autophagy mutant. The identification of multiple novel effectors of yeast chronological lifespan will greatly aid in the elucidation of mechanisms that cells and organisms utilize in slowing down the aging process.
PMCID:2858703
PMID: 20421943
ISSN: 1553-7390
CID: 571862

Specificity of the BRISC deubiquitinating enzyme is not due to selective binding to Lys63-linked polyubiquitin

Cooper, Eric M; Boeke, Jef D; Cohen, Robert E
BRISC (Brcc36-containing isopeptidase complex) is a four-subunit deubiquitinating (DUB) enzyme that has a catalytic subunit, called Brcc36, that is a member of the JAMM/MPN(+) family of zinc metalloproteases. A notable feature of BRISC is its high specificity for cleaving Lys(63)-linked polyubiquitin. Here, we show that BRISC selectivity is not due to preferential binding to Lys(63)-linked polyubiquitin but is instead dictated by how the substrate isopeptide linkage is oriented within the enzyme active site. BRISC possesses a high affinity binding site for the ubiquitin hydrophobic surface patch that accounts for the bulk of the affinity between enzyme and substrate. Although BRISC can interact with either subunit of a diubiquitin conjugate, substrate cleavage occurs only when BRISC is bound to the hydrophobic patch of the distal (i.e. the "S1") ubiquitin at a ubiquitin-ubiquitin cleavage site. The importance of the Lys(63)-linked proximal (S1') ubiquitin was underscored by our finding that BRISC could not cleave the isopeptide bond joining a ubiquitin to a non-ubiquitin substrate. Finally, we also show that Abro1, another BRISC subunit, binds directly to Brcc36 and that the Brcc36-Abro1 heterodimer includes a minimal complex with Lys(63)-specific DUB activity.
PMCID:2856240
PMID: 20032457
ISSN: 0021-9258
CID: 571902

Silent information regulator 3: the Goldilocks of the silencing complex

Norris, Anne; Boeke, Jef D
A recent explosion of work surrounds the interactions between Sir3p (Silent Information Regulator 3) and chromatin. We review here the Sir3p functions related to its role in silencing in Saccharomyces cerevisiae. This unusual protein, which is absolutely required for silencing, is distantly related to the highly conserved replication initiator Orc1p, but is itself phylogenetically limited to "post-genome-duplicated" budding yeasts. Several recent studies revise earlier models for Sir3p action. Specifically, the N-terminal bromo-adjacent homology (BAH) domain plays a now well-defined role in silencing, and a picture is emerging in which both termini of Sir3p bind two locations on the nucleosome: (1) the loss of ribosomal DNA silencing (LRS) surface in the nucleosome core, and (2) the N-terminal histone tails for effective silencing at telomeres. We relate Sir3p structure and function, and summarize recent molecular studies of Sir3p/chromatin binding, Sir3p/Dot1p competition, and the possible role of O-Acetyl ADP ribose (O-AADPR) in Sir3p/chromatin binding. We emphasize recent genetic data that provide important new insights and settle controversies created by in vitro work. Finally, we synthesize these ideas to revise the model for how Sir3p mediates silent chromatin formation in yeast, in part through its affinity for the LRS region of the nucleosome, which must be "just right."
PMCID:2807346
PMID: 20080949
ISSN: 0890-9369
CID: 571892

Histone h3 exerts a key function in mitotic checkpoint control

Luo, Jianjun; Xu, Xinjing; Hall, Hana; Hyland, Edel M; Boeke, Jef D; Hazbun, Tony; Kuo, Min-Hao
It has been firmly established that many interphase nuclear functions, including transcriptional regulation, are regulated by chromatin and histones. How mitotic progression and quality control might be influenced by histones is less well characterized. We show that histone H3 plays a crucial role in activating the spindle assembly checkpoint in response to a defect in mitosis. Prior to anaphase, all chromosomes must attach to spindles emanating from the opposite spindle pole bodies. The tension between sister chromatids generated by the poleward pulling force is an integral part of chromosome biorientation. Lack of tension due to erroneous attachment activates the spindle assembly checkpoint, which corrects the mistakes and ensures segregation fidelity. A histone H3 mutation impairs the ability of yeast cells to activate the checkpoint in a tensionless crisis, leading to missegregation and aneuploidy. The defects in tension sensing result directly from an attenuated H3-Sgo1p interaction essential for pericentric recruitment of Sgo1p. Reinstating the pericentric enrichment of Sgo1p alleviates the mitotic defects. Histone H3, and hence the chromatin, is thus a key factor transmitting the tension status to the spindle assembly checkpoint.
PMCID:2798460
PMID: 19917722
ISSN: 0270-7306
CID: 571912

Making temperature-sensitive mutants

Ben-Aroya, Shay; Pan, Xuewen; Boeke, Jef D; Hieter, Philip
The study of temperature-sensitive (Ts) mutant phenotypes is fundamental to gene identification and for dissecting essential gene function. In this chapter, we describe two "shuffling" methods for producing Ts mutants using a combination of PCR, in vivo recombination, and transformation of diploid strains heterozygous for a knockout of the desired mutation. The main difference between the two methods is the type of strain produced. In the "plasmid" version, the product is a knockout mutant carrying a centromeric plasmid carrying the Ts mutant. In the "chromosomal" version, The Ts alleles are integrated directly into the endogenous locus, albeit not in an entirely native configuration. Both variations have their strengths and weaknesses, which are discussed here.
PMCID:2957654
PMID: 20946811
ISSN: 0076-6879
CID: 571822

Plug and play modular strategies for synthetic retrotransposons

An, Wenfeng; Davis, Edward S; Thompson, Tina L; O'Donnell, Kathryn A; Lee, Chih-Yung; Boeke, Jef D
Recent progress in L1 biology highlights its role as a major driving force in the evolution of mammalian genome structure and function. This coincides with direct confirmation of the preponderance of long interspersed elements in mammalian genomes at the nucleotide level by large scale sequencing efforts. Two assay systems have been prominently featured in L1 studies over the past decade, which are used to assess L1 activities in cultured cells and transgenic mice respectively. However, constructing retrotransposon assay vectors and subsequent mapping of integration sites remain technically challenging aspects of the field. Synthetic biology approaches have changed the playing field with regard to the strategic design of retrotransposons. To streamline the construction and optimization of synthetic retrotransposons, we have implemented a highly efficient modular design for L1 vectors allowing "plug and play" swapping of individual modules as new knowledge is gained and optimization of constructs proceeds. Seven functional modules are divided by strategically placed unique restriction sites. These are utilized to facilitate module exchange and construction of L1 vectors for gene targeting, transgenesis and cell culture assays. A "double SfiI" strategy utilizing two non-complementary overhangs allows insert swapping to be carried out with a single, robust restriction/ligation cycle. The double-SfiI strategy is generic and can be applied to many other problems in synthetic biology or genetic engineering. To facilitate genomic mapping of L1 insertions, we have developed an optimized inverse PCR protocol using 4-base cutters and step-down cycling conditions. Using this protocol, de novo L1 insertions can be efficiently recovered after a single round of PCR. The proposed modular design also incorporates features allowing streamlined insertion mapping without repeated optimization. Furthermore, we have presented evidence that efficient L1 retrotransposition is not dependent on pCEP4 conferred autonomous replication capabilities when a shortened puromycin selection protocol is used, providing a great opportunity for further optimization of L1 cell culture assay vectors by using alternative vector backbones.
PMCID:2763960
PMID: 19481606
ISSN: 1046-2023
CID: 571932