Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:cronsb01

Total Results:

378


A public-private partnership: the new york university-health and hospitals corporation clinical and translational science institute

Capponi, Louis; Trinh-Shevrin, Chau; Cronstein, Bruce N; Hochman, Judith S
PMCID:3536827
PMID: 22686198
ISSN: 1752-8062
CID: 169518

Adenosine A2A Receptor Activation Prevents Wear Particle-Induced Osteolysis

Mediero, Aranzazu; Frenkel, Sally R; Wilder, Tuere; He, Wenjie; Mazumder, Amitabha; Cronstein, Bruce N
Prosthesis loosening, associated with wear particle-induced inflammation and osteoclast-mediated bone destruction, is a common cause for joint implant failure, leading to revision surgery. Adenosine A(2A) receptors (A(2A)Rs) mediate potent anti-inflammatory effects in many tissues and prevent osteoclast differentiation. We tested the hypothesis that an A(2A)R agonist could reduce osteoclast-mediated bone resorption in a murine calvaria model of wear particle-induced bone resorption. C57BL/6 and A(2A)R knockout (A(2A)R KO) mice received ultrahigh-molecular weight polyethylene particles and were treated daily with either saline or the A(2A)R agonist CGS21680. After 2 weeks, micro-computed tomography of calvaria demonstrated that CGS21680 reduced particle-induced bone pitting and porosity in a dose-dependent manner, increasing cortical bone and bone volume compared to control mice. Histological examination demonstrated diminished inflammation after treatment with CGS21680. In A(2A)R KO mice, CGS21680 did not affect osteoclast-mediated bone resorption or inflammation. Levels of bone resorption markers receptor activator of nuclear factor kappaB (RANK), RANK ligand, cathepsin K, CD163, and osteopontin were reduced after CGS21680 treatment, together with a reduction in osteoclasts. Secretion of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha was significantly decreased, whereas IL-10 was markedly increased in bone by CGS21680. These results in mice suggest that site-specific delivery of an adenosine A(2A)R agonist could enhance implant survival, delaying or eliminating the need for revision arthroplastic surgery.
PMCID:3386559
PMID: 22623741
ISSN: 1946-6234
CID: 167513

The pro-fibrotic cytokines IL-33 and IL-13 modulate dermal fibrosis via the A2A adenosine receptor [Meeting Abstract]

Radusky, R. C.; Franks, L.; Feig, J.; Fernandez, P.; Franks, A. G.; Cronstein, B. N.; Chan, E. S.
ISI:000302866900059
ISSN: 0022-202x
CID: 165684

The Effect of A(2A) Adenosine Receptor Activation on C-C Chemokine Receptor 7 Expression in Human THP1 Macrophages During Inflammation

Williams AJ; Cronstein BN
C-C chemokine receptor 7 (CCR7) and its chemoattractant agonist CCL21 promote cell migration and expression of pro-inflammatory proteins in an atherogenic environment. Since A(2A) adenosine receptor activation reduces migration and inflammatory effects, we examined its effect on CCR7 expression and migration. CCR7 protein expression decreased by about a third in macrophages treated with A(2A) receptor agonist CGS 21680 (p = 0.028, n = 7) and was reversed with antagonist, although mRNA levels increased twofold (p = 0.001, n = 3). Furthermore, macrophages treated with CGS 21680 showed a significant decrease in migration (p = 0.0311, n = 7). These results suggest that A(2A) adenosine receptor activation not only modulates CCR7 expression in both normal and inflammatory environments but also regulates macrophage migration to CCR7-specific chemoattractants
PMCID:4366145
PMID: 21739164
ISSN: 1573-2576
CID: 141440

Regulation of foam cells by adenosine

Reiss, Allison B; Cronstein, Bruce N
Macrophages rely on reverse cholesterol transport mechanisms to rid themselves of excess cholesterol. By reducing accumulation of cholesterol in the artery wall, reverse cholesterol transport slows or prevents development of atherosclerosis. In stable macrophages, efflux mechanisms balance influx mechanisms, and accumulating lipids do not overwhelm the cell. Under atherogenic conditions, inflow of cholesterol exceeds outflow, and the cell is ultimately transformed into a foam cell, the prototypical cell in the atherosclerotic plaque. Adenosine is an endogenous purine nucleoside released from metabolically active cells by facilitated diffusion and generated extracellularly from adenine nucleotides. Under stress conditions, such as hypoxia, a depressed cellular energy state leads to an acute increase in the extracellular concentration of adenosine. Extracellular adenosine interacts with 1 or more of a family of G protein-coupled receptors (A(1), A(2A), A(2B), and A(3)) to modulate the function of nearly all cells and tissues. Modulation of adenosine signaling participates in regulation of reverse cholesterol transport. Of particular note for the development of atherosclerosis, activation of A(2A) receptors dramatically inhibits inflammation and protects against tissue injury. Potent antiatherosclerotic effects of A(2A) receptor stimulation include inhibition of macrophage foam cell transformation and upregulation of the reverse cholesterol transport proteins cholesterol 27-hydroxylase and ATP binding cassette transporter A1. Thus, A(2A) receptor agonists may correct or prevent the adverse effects of inflammatory processes on cellular cholesterol homeostasis. This review focuses on the importance of extracellular adenosine acting at specific receptors as a regulatory mechanism to control the formation of foam cells under conditions of lipid loading.
PMCID:3306592
PMID: 22423040
ISSN: 1079-5642
CID: 162036

Adenosine receptor signaling in keratinocyte proliferation and implications for caffeine and methotrexate therapy [Meeting Abstract]

Smith, Gideon; Franks, Andrew; Cronstein, Bruce; Chan, Edwin
ISI:000302319800135
ISSN: 0190-9622
CID: 165686

Adenosine-mediated dermal fibrosis and Fli-1 expression in CD39 and CD73 knockout mice [Meeting Abstract]

Smith, Gideon; Franks, Andrew; Cronstein, Bruce; Chan, Edwin; Liu, Hailing; Fernandez, Patricia
ISI:000302319800006
ISSN: 0190-9622
CID: 165685

Preparedness of the CTSA's structural and scientific assets to support the mission of the National Center for Advancing Translational Sciences (NCATS)

Shamoon, Harry; Center, David; Davis, Pamela; Tuchman, Mendel; Ginsberg, Henry; Califf, Robert; Stephens, David; Mellman, Thomas; Verbalis, Joseph; Nadler, Lee; Shekhar, Anantha; Ford, Daniel; Rizza, Robert; Shaker, Reza; Brady, Kathleen; Murphy, Barbara; Cronstein, Bruce; Hochman, Judith; Greenland, Philip; Orwoll, Eric; Sinoway, Lawrence; Greenberg, Harry; Jackson, Rebecca; Coller, Barry; Topol, Eric; Guay-Woodford, Lisa; Runge, Marschall; Clark, Robert; McClain, Don; Selker, Harry; Lowery, Curtis; Dubinett, Steven; Berglund, Lars; Cooper, Dan; Firestein, Gary; Johnston, S Clay; Solway, Julian; Heubi, James; Sokol, Ronald; Nelson, David; Tobacman, Larry; Rosenthal, Gary; Aaronson, Lauren; Barohn, Richard; Kern, Philip; Sullivan, John; Shanley, Thomas; Blazar, Bruce; Larson, Richard; FitzGerald, Garret; Reis, Steven; Pearson, Thomas; Buchanan, Thomas; McPherson, David; Brasier, Allan; Toto, Robert; Disis, Mary; Drezner, Marc; Bernard, Gordon; Clore, John; Evanoff, Bradley; Imperato-McGinley, Julianne; Sherwin, Robert; Pulley, Jill
The formation of the National Center for Advancing Translational Sciences (NCATS) brings new promise for moving basic science discoveries to clinical practice, ultimately improving the health of the nation. The Clinical and Translational Science Award (CTSA) sites, now housed with NCATS, are organized and prepared to support in this endeavor. The CTSAs provide a foundation for capitalizing on such promise through provision of a disease-agnostic infrastructure devoted to clinical and translational (C&T) science, maintenance of training programs designed for C&T investigators of the future, by incentivizing institutional reorganization and by cultivating institutional support.
PMCID:3335735
PMID: 22507116
ISSN: 1752-8062
CID: 386942

ADENOSINE A2A RECEPTOR (A2AR) ACTIVATION STIMULATES INCREASED EXPRESSION OF COLLAGEN-1 AND COLLAGEN-3 BY DIFFERENT SIGNALING PATHWAYS IN NORMAL HUMAN DERMAL FIBROBLASTS [Meeting Abstract]

Perez-Aso, M.; Cronstein, B. N.
ISI:000300943100088
ISSN: 1067-1927
CID: 2962102

Cholesterol 27-Hydroxylase but Not Apolipoprotein apoE Contributes to A(2A) Adenosine Receptor Stimulated Reverse Cholesterol Transport

Bingham TC; Parathath S; Tian H; Reiss A; Chan E; Fisher EA; Cronstein BN
Movement of free cholesterol between the cellular compartment and acceptor is governed by cholesterol gradients that are determined by several enzymes and reverse cholesterol transport proteins. We have previously demonstrated that adenosine A(2A) receptors inhibit foam cell formation and stimulate production of cholesterol 27-hydroxylase (CYP27A1), an enzyme involved in the conversion of cholesterol to oxysterols. We therefore asked whether the effect of adenosine A(2A) receptors on foam cell formation in vitro is mediated by CYP27A1 or apoE, a carrier for cholesterol in the serum. We found that specific lentiviral siRNA infection markedly reduced apoE or 27-hydroxylase mRNA in THP-1 cells. Despite diminished apoE expression (p < 0.0002, interferon-gamma (IFNgamma) CGS vs. IFNgamma alone, n = 4), CGS-21680, an adenosine A(2A) receptor agonist, inhibits foam cell formation. In contrast, CGS-21680 had no effect on reducing foam cell formation in CYP27A1 KD cells (4 +/- 2%; p < 0.5113, inhibition vs. IFNgamma alone, n = 4). Previously, we reported the A(2A) agonist CGS-21680 increases apoAI-mediated cholesterol efflux nearly twofold in wild-type macrophages. Adenosine receptor activation had no effect on cholesterol efflux in CYP27A1 KD cells but reduced efflux in apoE KD cells. These results demonstrate that adenosine A(2A) receptor occupancy diminishes foam cell formation by increasing expression and function of CYP27A1
PMCID:3288609
PMID: 21258856
ISSN: 1573-2576
CID: 122556