Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:pc92

Total Results:

503


Dynamic nanomechanical analysis of the vocal fold structure in excised larynges

Dion, Gregory R; Coelho, Paulo G; Teng, Stephanie; Janal, Malvin N; Amin, Milan R; Branski, Ryan C
OBJECTIVES/HYPOTHESIS: Quantification of clinical outcomes after vocal fold (VF) interventions is challenging with current technology. High-speed digital imaging and optical coherence tomography (OCT) of excised larynges assess intact laryngeal function, but do not provide critical biomechanical information. We developed a protocol to quantify tissue properties in intact, excised VFs using dynamic nanomechanical analysis (nano-DMA) to obtain precise biomechanical properties in the micrometer scale. STUDY DESIGN: Experimental animal study. METHODS: Three pig larynges were bisected in the sagittal plane, maintaining an intact anterior commissure, and subjected to nano-DMA at nine locations with a 250-mum flat-tip punch and frequency sweep load profile (10-105 Hz, 1,000 muN peak force) across the free edge of the VF and inferiorly along the conus elasticus. RESULTS: Storage, loss, and complex moduli increased inferiorly from the free edge. Storage moduli increased from a mean of 32.3 kPa (range, 6.5-55.38 kPa) at the free edge to 46.3kPa (range, 7.4-71.6) 5 mm below the free edge, and 71.4 kPa (range, 33.7-112 kPa) 1 cm below the free edge. Comparable values were 11.6 kPa (range, 5.0-20.0 kPa), 16.7 kPa (range, 5.7-26.8 kPa), and 22.6 kPa (range, 9.7-38.0 kPa) for loss modulus, and 35.7 kPa (range, 14.4-56.4 kPa), 50.1 kPa (range, 18.7-72.8 kPa), and 75.4 kPa (range, 42.0-116.0 kPa) for complex modulus. Another larynx repeatedly frozen and thawed during technique development had similarly increased storage, loss, and complex modulus trends across locations. CONCLUSIONS: Nano-DMA of the intact hemilarynx provides a platform for quantification of biomechanical responses to a myriad of therapeutic interventions to complement data from high-speed imaging and OCT. LEVEL OF EVIDENCE: NA Laryngoscope, 2016.
PMCID:5440222
PMID: 27873325
ISSN: 1531-4995
CID: 2314422

Early Healing Evaluation of Commercially Pure Titanium and Ti-6Al-4V Presenting Similar Surface Texture: An In Vivo Study

Castellano, Arthur; Gil, Luiz F; Bonfante, Estevam A; Tovar, Nick; Neiva, Rodrigo; Janal, Malvin N; Coelho, Paulo G
OBJECTIVE: This study evaluated the osseointegration of commercially pure titanium (Ti) grade-2 (G2) and Ti-6Al-4V alloy (G5) implants with the same geometry and surface treatment. MATERIALS AND METHODS: Thirty-six dental implants with a grit-blasted acid-etched surface were used (n = 18, each). Two implants, one per group, were installed in each subject, in the radius diaphysis (n = 18 beagle dogs), with interchanged fixture position (proximal-distal) between animals for a balanced number of devices per group and time in vivo (1, 3, and 6 weeks). RESULTS: Similar topographical parameters between G2 and G5 were observed for average surface roughness, root mean square, developed surface ratio, maximum height of surface, and density of summits. Removal torque was significantly higher for G5 than for G2. No differences were observed for bone-to-implant contact and bone-area-fraction occupancy. Removal torque significantly increased with time for both groups. At 1 week, new bone formation in direct contact with the implant surface and osteogenic tissue migration was observed with an increase in woven bone formation at 3 weeks followed by the onset of lamellar bone formation at 6 weeks. CONCLUSION: Although both surfaces were biocompatible and osteoconductive, increased removal torque was observed for Ti-6Al-4V compared with commercially pure Ti implants.
PMID: 28406881
ISSN: 1538-2982
CID: 2528522

The technique for 3D printing patient-specific models for auricular reconstruction

Flores, Roberto L; Liss, Hannah; Raffaelli, Samuel; Humayun, Aiza; Khouri, Kimberly S; Coelho, Paulo G; Witek, Lukasz
PURPOSE: Currently, surgeons approach autogenous microtia repair by creating a two-dimensional (2D) tracing of the unaffected ear to approximate a three-dimensional (3D) construct, a difficult process. To address these shortcomings, this study introduces the fabrication of patient-specific, sterilizable 3D printed auricular model for autogenous auricular reconstruction. METHODS: A high-resolution 3D digital photograph was captured of the patient's unaffected ear and surrounding anatomic structures. The photographs were exported and uploaded into Amira, for transformation into a digital (.stl) model, which was imported into Blender, an open source software platform for digital modification of data. The unaffected auricle as digitally isolated and inverted to render a model for the contralateral side. The depths of the scapha, triangular fossa, and cymba were deepened to accentuate their contours. Extra relief was added to the helical root to further distinguish this structure. The ear was then digitally deconstructed and separated into its individual auricular components for reconstruction. The completed ear and its individual components were 3D printed using polylactic acid filament and sterilized following manufacturer specifications. RESULTS: The sterilized models were brought to the operating room to be utilized by the surgeon. The models allowed for more accurate anatomic measurements compared to 2D tracings, which reduced the degree of estimation required by surgeons. Approximately 20 g of the PLA filament were utilized for the construction of these models, yielding a total material cost of approximately $1. CONCLUSION: Using the methodology detailed in this report, as well as departmentally available resources (3D digital photography and 3D printing), a sterilizable, patient-specific, and inexpensive 3D auricular model was fabricated to be used intraoperatively. This technique of printing customized-to-patient models for surgeons to use as 'guides' shows great promise.
PMID: 28465028
ISSN: 1878-4119
CID: 2546542

Volumetric shrinkage and film thickness of cementation materials for veneers: An in vitro 3D microcomputed tomography analysis

Sampaio, Camila S; Barbosa, Joao Malta; Caceres, Eduardo; Rigo, Lindiane C; Coelho, Paulo G; Bonfante, Estevam A; Hirata, Ronaldo
STATEMENT OF PROBLEM: Few studies have investigated the volumetric polymerization shrinkage and film thickness of the different cementation techniques used to cement veneers. PURPOSE: The purpose of this in vitro study was to evaluate the volumetric polymerization shrinkage (VS) and film thickness (FT) of various cementation techniques through 3-dimensional (3D) microcomputed tomography (muCT). MATERIAL AND METHODS: Forty-eight artificial plastic maxillary central incisors with standard preparations for veneers were provided by a mannequin manufacturer (P-Oclusal) and used as testing models with the manufacturer's plastic veneers. They were divided into 8 groups (n=6): RelyX Veneer + Scotchbond Universal (RV+SBU); Variolink Esthetic LC+Adhese Universal (VE+ADU); Filtek Supreme Ultra Flowable + Scotchbond Universal (FF+SBU); IPS Empress Direct Flow + Adhese Universal (IEF+ADU); Filtek Supreme Ultra Universal + Scotchbond Universal (FS+SBU); IPS Empress Direct + Adhese Universal (IED+ADU); Preheated Filtek Supreme Ultra Universal + Scotchbond Universal (PHF+SBU); and Preheated IPS Empress Direct + Adhese Universal (PHI+ADU). Specimens were scanned before and after polymerization using a muCT apparatus (mCT 40; Scanco Medical AG), and the resulting files were imported and analyzed with 3D rendering software to calculate the VS and FT. Collected data from both the VS and FT were submitted to 1-way ANOVA (alpha=.05). RESULTS: VE+ADU had the lowest volumetric shrinkage (1.03%), which was not significantly different from RV+SBU, FF+SBU or IEF+ADU (P>.05). The highest volumetric shrinkage was observed for FS+SBU (2.44%), which was not significantly different from RV+SBU, IED+ADU, PHF+SBU, or PHI+ADU (P>.05). Group RV+SBU did not differ statistically from the remaining groups (P>.05). Film thickness evaluation revealed the lowest values for RV+SBU, VE+ADU, FF+SBU, and IEF+ADU, with an average between groups of 0.17 mm; these groups were significantly different from FS+SBU, IED+ADU, PHF+SBU, and PHI+ADU (P>.05), with an average of 0.31 mm. CONCLUSIONS: Both the VS and the FT of direct restorative composite resins were higher than those of veneer cements and flowable composite resins, whether preheated or not preheated.
PMID: 27836148
ISSN: 1097-6841
CID: 2304662

Cortical and Trabecular Bone Healing Patterns and Quantification for Three Different Dental Implant Systems

Marao, Heloisa F; Jimbo, Ryo; Neiva, Rodrigo; Gil, Luiz Fernando; Bowers, Michelle; Bonfante, Estevam A; Tovar, Nick; Janal, Malvin N; Coelho, Paulo G
PURPOSE: The present study hypothesized that different bone healing patterns through initial stages of osseointegration would be observed when three distinct commercially available implant systems (Nobel Groovy, Implacil, and Zimmer TSV) were used, leading to significant variations in histometric levels of total bone and new bone formation during the osseointegration process. MATERIALS AND METHODS: A total of 48 implants were placed bilaterally on the tibias of eight beagle dogs and allowed to heal for 2 and 6 weeks. Following euthanasia, nondecalcified specimens were processed for morphologic and histometric evaluation. Bone-to-implant contact (BIC) and new bone area fraction occupancy (BAFO) analyses for native and new bone were performed along the whole perimeter of each implant and separately for the cortical and trabecular bone regions. RESULTS: Morphologic evaluation of cortical bone presented different healing patterns and osseointegration levels for different implant systems as time elapsed in vivo. Interfacial remodeling was the chief healing pattern in Zimmer implants, while a combination of interfacial remodeling and healing chambers was observed in Nobel and Implacil implants. When trabecular bone was evaluated, similar bone healing patterns were observed between systems despite different levels of osseointegration observed as a function of implantation time, implant system, and native and/or new bone BIC and BAFO. CONCLUSION: Different implant systems led to different healing patterns during early stages of osseointegration. Such variation in pattern was more noticeable in the cortical regions compared to the trabecular regions. The variation in bone healing pattern did significantly influence overall indicators of native and new BIC and BAFO during the osseointegration process. The postulated hypothesis was accepted.
PMID: 27835707
ISSN: 1942-4434
CID: 2625962

Patient-specific 3D models for autogenous ear reconstruction [Meeting Abstract]

Witek, L; Khouri, K; Coelho, P; Flores, R
Background/Purpose: Autogenous ear reconstruction remains one of the most technically challenging procedures in plastic surgery. Current methods to autogenous ear construct design entail tracing the contralateral (unaffected) ear, if available, and using this 2 dimensional outline as a surgical model. This study explores the feasibility of creating in-house patient specific intraoperative 3D models of autogenous ear reconstruction. Methods/Description: A 3 dimensional photograph of the unaffected ear (3DMD, Atlanta, GA) of a patient with unilateral microtia was uploaded into Amira (FEI Company, Hillsboro, Oregon, USA) and transformed to a (.stl) digital model. After rendering the (.stl) model of the ear, it was imported into Blendere (Amsterdam, The Netherlands) where it was inverted along the vertical axis to create a working template of the contralateral ear. The depths of the scapha, triangular fossa and cymba were all deepened to accentuate these contours. Additional relief was added to the helical root to further define this structure. The final template was digitally separated to create the requisite auricular components for the Nagata technique reconstruction: helix; antihelical fold with the superior and inferior crus; base frame. The patient had an intact tragus. The helix was digitally straightened to optimize its use as a model. The complete auricular model and the separated auricular components were all individually 3D printed (Builder Premium 3D Printer, Noordwijkerhout, The Netherlands) using a polylactic acid filament and sterilized following the manufacturer's specifications (1218C for 1 hour and 30 minute dry cycle). Results: The total time of digital preparation was 5 hours. Total time of 3D printing was 5.5 hours. Total cost of manufacturing was $0.78. On the day of surgery these sterilized, patient-specific 3 dimensional models were brought to the operating room and placed on the back table with the ear sculpting tools and carving block. The sterilized models were placed on the cartilage grafts and the forms and relief of the cartilage construct was easily appreciated and incorporated into the cartilage shape. Compared to the classic auricular tracings also present during this surgery these 3D printed models contained more detailed anatomic information which eliminated much of the guesswork from auricular reconstruction and resulted in a more efficient and precise operation. Conclusions: Leveraging hardware, expertise and software platforms already existing within an academic medical center, affordable, sterilizable, patient-specific 3D auricular models can be manufactured and used during autogenous ear construction
EMBASE:617893522
ISSN: 1545-1569
CID: 2682172

In Silico Analysis of the Biomechanical Stability of Commercially Pure Ti and Ti-15Mo Plates for the Treatment of Mandibular Angle Fracture

Yamaguchi, Satoshi; Anchieta, Rodolfo B; Guastaldi, Fernando P S; Tovar, Nick; Tawara, Daisuke; Imazato, Satoshi; Coelho, Paulo G
PURPOSE: To investigate the influence of different materials and fixation methods on maximum principal stress (MPS) and displacement in reconstruction plates using in silico 3-dimensional finite element analysis (3D-FEA). MATERIALS AND METHODS: Computer-assisted designed (CAD) models of the mandible and teeth were constructed. Champy and AO/ASIF plates and fixation screws were designed with CAD software. 3D-FEA was performed by image-based CAE software. Maximum and minimum values of biomechanical stability, MPS, and displacement distribution were compared in Champy and AO/ASIF plates made from commercially pure titanium grade 2 (cp-Ti) and a titanium-and-molybdenum (14.47% wt) alloy (Ti-15Mo). RESULTS: For plates fixed on a model of a fractured left angle of the mandible, the maximum and minimum values of MPS in the cp-Ti-constructed Champy plate, upper AO/ASIF plate, and lower AO/ASIF plate were 19.5 and 20.3%, 15.2 and 25.3%, and 21.4 and 4.6% lower, respectively, than those for plates made from Ti-15Mo. In the same model, the maximum and minimum values of displacement in the cp-Ti-constructed Champy plate, upper AO/ASIF plate, and lower AO/ASIF plate were 1.6 and 3.8%, 3.1 and 2.7%, and 5.4 and 10.4% higher, respectively, than those for plates made from Ti-15Mo. CONCLUSIONS: This in silico 3D-FEA shows that Ti-15Mo plates have greater load-bearing capability.
PMID: 28137635
ISSN: 1531-5053
CID: 2425222

Osseodensification for enhancement of spinal surgical hardware fixation

Lopez, Christopher D; Alifarag, Adham M; Torroni, Andrea; Tovar, Nick; Diaz-Siso, J Rodrigo; Witek, Lukasz; Rodriguez, Eduardo D; Coelho, Paulo G
Integration between implant and bone is an essential concept for osseous healing requiring hardware placement. A novel approach to hardware implantation, termed osseodensification, is described here as an effective alternative. 12 sheep averaging 65kg had fixation devices installed in their C2, C3, and C4 vertebral bodies; each device measured 4mm diameterx10mm length. The left-sided vertebral body devices were implanted using regular surgical drilling (R) while the right-sided devices were implanted using osseodensification drilling (OD). The C2 and C4 vertebra provided the t=0 in vivo time point, while the C3 vertebra provided the t=3 and t=6 week time points, in vivo. Structural competence of hardware was measured using biomechanical testing of pullout strength, while the quality and degree of new bone formation and remodeling was assessed via histomorphometry. Pullout strength demonstrated osseodensification drilling to provide superior anchoring when compared to the control group collapsed over time with statistical significance (p<0.01). On Wilcoxon rank signed test, C2 and C4 specimens demonstrated significance when comparing device pullout (p=0.031) for both, and C3 pullout tests at 3 and 6 weeks collapsed over time had significance as well (p=0.027). Percent bone-to-implant contact (%BIC) analysis as a function of drilling technique demonstrated an OD group with significantly higher values relative to the R group (p<0.01). Similarly, percent bone-area-fraction-occupancy (BAFO) analysis presented with significantly higher values for the OD group compared to the R group (p=0.024). As a function of time, between 0 and 3 weeks, a decrease in BAFO was observed, a trend that reversed between 3 and 6 weeks, resulting in a BAFO value roughly equivalent to the t=0 percentage, which was attributed to an initial loss of bone fraction due to remodeling, followed by regaining of bone fraction via production of woven bone. Histomorphological data demonstrated autologous bone chips in the OD group with greater frequency relative to the control, which acted as nucleating surfaces promoting new bone formation around the implants, providing superior stability and greater bone density. This alternative approach to a critical component of hardware implantation encourages assessment of current surgical approaches to hardware implantation.
PMCID:5434975
PMID: 28113132
ISSN: 1878-0180
CID: 2418102

Microcomputed Tomography Evaluation of Volumetric Shrinkage of Bulk-Fill Composites in Class II Cavities

Algamaiah, Hamad; Sampaio, Camila S; Rigo, Lindiane C; Janal, Malvin N; Giannini, Marcelo; Bonfante, Estevam A; Coelho, Paulo G; Reis, Andre F; Hirata, Ronaldo
PURPOSE: This study aimed to quantify polymerization shrinkage of one conventional and three bulk-fill composites, under bonded and unbonded conditions, in Class II preparations using 3D microcomputed tomography (muCT) and report its location. MATERIALS AND METHODS: Preparations (2.5 mm occlusal depth x 4 mm wide x 4 mm mesial box and 1 mm beyond the CEJ distal box depth) were made in 48 human extracted molars (n = 6). Four composites were tested, one regular (Vitalescence/VIT) and three bulk-fill: SureFil SDR Flow (SDR), Tetric EvoCeram Bulk Fill (TET), and Filtek flowable Bulk Fill (FIL). Teeth were divided into four groups according to restorative material used and subdivided into two subgroups, according to the presence of an adhesive system (XP Bond) application (bonded [-B]) or its absence (unbonded [-U]). Each tooth was scanned three times: (1) after cavity preparation, (2) before and (3) after composite light-curing. Acquired muCT images were imported into 2D and 3D software for analysis. RESULTS: Significantly different volumetric shrinkage between bonded and unbonded conditions was observed only for TET group (p < 0.05), unbonded presenting significantly higher volumetric shrinkage. Among the bonded groups, TET-B presented significantly lower shrinkage than both SDR-B and FIL-B but not significantly different from VIT-B. Generally, shrinkage occurred at occlusal and distal surfaces. CONCLUSIONS: When applied to bonded Class II cavities, TET exhibited significantly lower volumetric shrinkage compared to the other bulk-fill composites. However, it also exhibited the highest difference of volumetric shrinkage values between unbonded and bonded cavities. CLINICAL SIGNIFICANCE: Volumetric polymerization shrinkage occurred with all composites tested, regardless of material type (conventional or bulk-fill) or presence or absence of bonding. However, volumetric shrinkage has been reduced or at least maintained when bulk-fill composites were used compared to a conventional composite resin, which makes them a potential time saving alternative for clinicians. (J Esthet Restor Dent, 2016).
PMID: 27925387
ISSN: 1708-8240
CID: 2354472

Store-operated Ca2+ entry controls ameloblast cell function and enamel development

Eckstein, Miriam; Vaeth, Martin; Fornai, Cinzia; Vinu, Manikandan; Bromage, Timothy G; Nurbaeva, Meerim K; Sorge, Jessica L; Coelho, Paulo G; Idaghdour, Youssef; Feske, Stefan; Lacruz, Rodrigo S
Loss-of-function mutations in stromal interaction molecule 1 (STIM1) impair the activation of Ca2+ release-activated Ca2+ (CRAC) channels and store-operated Ca2+ entry (SOCE), resulting in a disease syndrome called CRAC channelopathy that is characterized by severe dental enamel defects. The cause of these enamel defects has remained unclear given a lack of animal models. We generated Stim1/2K14cre mice to delete STIM1 and its homolog STIM2 in enamel cells. These mice showed impaired SOCE in enamel cells. Enamel in Stim1/2K14cre mice was hypomineralized with decreased Ca content, mechanically weak, and thinner. The morphology of SOCE-deficient ameloblasts was altered, showing loss of the typical ruffled border, resulting in mislocalized mitochondria. Global gene expression analysis of SOCE-deficient ameloblasts revealed strong dysregulation of several pathways. ER stress genes associated with the unfolded protein response were increased in Stim1/2-deficient cells, whereas the expression of components of the glutathione system were decreased. Consistent with increased oxidative stress, we found increased ROS production, decreased mitochondrial function, and abnormal mitochondrial morphology in ameloblasts of Stim1/2K14cre mice. Collectively, these data show that loss of SOCE in enamel cells has substantial detrimental effects on gene expression, cell function, and the mineralization of dental enamel.
PMCID:5358480
PMID: 28352661
ISSN: 2379-3708
CID: 2508342