Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:buzsag01

Total Results:

388


Electrical wiring of the oscillating brain [Comment]

Buzsaki, G
In this issue of Neuron, two laboratories (Deans et al. and Hormuzdi et al.) find that cortical gamma oscillation in vitro is impaired in the Cx36 knockout mouse. What are the implications?
PMID: 11516391
ISSN: 0896-6273
CID: 149321

Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience

Hirase, H; Leinekugel, X; Czurko, A; Csicsvari, J; Buzsaki, G
What determines the firing rate of cortical neurons in the absence of external sensory input or motor behavior, such as during sleep? Here we report that, in a familiar environment, the discharge frequency of simultaneously recorded individual CA1 pyramidal neurons and the coactivation of cell pairs remain highly correlated across sleep-wake-sleep sequences. However, both measures were affected when new sets of neurons were activated in a novel environment. Nevertheless, the grand mean firing rate of the whole pyramidal cell population remained constant across behavioral states and testing conditions. The findings suggest that long-term firing patterns of single cells can be modified by experience. We hypothesize that increased firing rates of recently used neurons are associated with a concomitant decrease in the discharge activity of the remaining population, leaving the mean excitability of the hippocampal network unaltered
PMCID:55430
PMID: 11470910
ISSN: 0027-8424
CID: 149322

Behavior-dependent states of the hippocampal network affect functional clustering of neurons

Hirase, H; Leinekugel, X; Csicsvari, J; Czurko, A; Buzsaki , G
Local versus distant coherence of hippocampal CA1 pyramidal cells was investigated in the behaving rat. Temporal cross-correlation of pyramidal cells revealed a significantly stronger relationship among local (<140 microm) pyramidal neurons compared with distant (>300 microm) neurons during non-theta-associated immobility and sleep but not during theta-associated running and walking. In contrast, cross-correlation between local pyramidal cell-interneuron pairs was significantly stronger than between distant pairs during theta oscillations but were similar during non-theta-associated behaviors. We suggest that network state-dependent functional clustering of neuronal activity emerges because of the differential contribution of the main excitatory inputs, the perforant path, and Schaffer collaterals during theta and non-theta behaviors
PMID: 11319243
ISSN: 1529-2401
CID: 149323

The application of printed circuit board technology for fabrication of multi-channel micro-drives

Szabo, I; Czurko, A; Csicsvari, J; Hirase, H; Leinekugel, X; Buzsaki, G
A modular multichannel microdrive ('hyperdrive') is described. The microdrive uses printed circuit board technology and flexible fused silica capillaries. The modular design allows for the fabrication of 4-32 independently movable electrodes or 'tetrodes'. The drives are re-usable and re-loading the drive with electrodes is simple
PMID: 11166371
ISSN: 0165-0270
CID: 149324

Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity

Henze, D A; Buzsaki, G
Understanding the mechanisms that influence the initiation of action potentials in single neurons is an important step in determining the way information is processed by neural networks. Therefore, we have investigated the properties of action potential thresholds for hippocampal neurons using in vivo intracellular recording methods in Sprague-Dawley rats. The use of in vivo recording has the advantage of the presence of naturally occurring spatio-temporal patterns of synaptic activity which lead to action potential initiation. We have found there is a large variability in the threshold voltage (5.7+/-1.7 mV; n=22) of individual action potentials. We have identified two separate factors that contribute to this variation in threshold: (1) fast rates of membrane potential change prior to the action potential are associated with more hyperpolarized thresholds (increased excitability) and (2) the occurrence of other action potentials in the 1 s prior to any given action potential is associated with more depolarized thresholds (decreased excitability). We suggest that prior action potentials cause sodium channel inactivation that recovers with approximately a 1-s time constant and thus depresses action potential threshold during this period
PMID: 11483306
ISSN: 0306-4522
CID: 149325

The apical shaft of CA1 pyramidal cells is under GABAergic interneuronal control

Papp, E; Leinekugel, X; Henze, D A; Lee, J; Buzsaki, G
Dendrites of pyramidal cells perform complex amplification and integration (reviewed in Refs 5, 9, 12 and 20). The presence of a large proximal apical dendrite has been shown to have functional implications for neuronal firing patterns (13) and under a variety of experimental conditions, the largest increases in intracellular Ca2+ occur in the apical shaft.(4,8,15,16,19,21-23) An important step in understanding the functional role of the proximal apical dendrite is to describe the nature of synaptic input to this dendritic region. Using light and electron microscopic methods combined with in vivo labeling of rat hippocampal CA1 pyramidal cells, we examined the total number of GABAergic and non-GABAergic inputs converging onto the first 200microm of the apical trunk. The number of spines associated with excitatory terminals increased from <0.2 spines/microm adjacent to the soma to 5.5 spines/microm at 200microm from the soma, whereas the number of GABAergic, symmetric terminals decreased from 0.8/microm to 0.08/microm over the same anatomical region. GABAergic terminals were either parvalbumin-, cholecystokinin- or vasointestinal peptide-immunoreactive. These findings indicate that the apical dendritic trunk mainly receives synaptic input from GABAergic interneurons. GABAergic inhibition during network oscillation may serve to periodically isolate the dendritic compartments from the perisomatic action potential generating sites
PMID: 11182239
ISSN: 0306-4522
CID: 149326

Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events

Csicsvari, J; Hirase, H; Mamiya, A; Buzsaki, G
Transfer of neuronal patterns from the CA3 to CA1 region was studied by simultaneous recording of neuronal ensembles in the behaving rat. A nonlinear interaction among pyramidal neurons was observed during sharp wave (SPW)-related population bursts, with stronger synchrony associated with more widespread spatial coherence. SPW bursts emerged in the CA3a-b subregions and spread to CA3c before invading the CA1 area. Synchronous discharge of >10% of the CA3 within a 100 ms window was required to exert a detectable influence on CA1 pyramidal cells. Activity of some CA3 pyramidal neurons differentially predicted the ripple-related discharge of circumscribed groups of CA1 pyramidal cells. We suggest that, in SPW behavioral state, the coherent discharge of a small group of CA3 cells is the primary cause of spiking activity in CA1 pyramidal neurons
PMID: 11144366
ISSN: 0896-6273
CID: 149327

Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus

Acsady, L; Katona, I; Martinez-Guijarro, F J; Buzsaki, G; Freund, T F
Perisomatic inhibitory innervation of all neuron types profoundly affects their firing characteristics and vulnerability. In this study we examined the postsynaptic targets of perisomatic inhibitory cells in the hilar region of the dentate gyrus where the proportion of potential target cells (excitatory mossy cells and inhibitory interneurons) is approximately equal. Both cholecystokinin (CCK)- and parvalbumin-immunoreactive basket cells formed multiple contacts on the somata and proximal dendrites of mossy cells. Unexpectedly, however, perisomatic inhibitory terminals arriving from these cell types largely ignored hilar GABAergic cell populations. Eighty-ninety percent of various GABAergic neurons including other CCK-containing basket cells received no input from CCK-positive terminals. Parvalbumin-containing cells sometimes innervated each other but avoided 75% of other GABAergic cells. Overall, a single mossy cell received 40 times more CCK-immunoreactive terminals and 15 times more parvalbumin-positive terminals onto its soma than the cell body of an average hilar GABAergic cell. In contrast to the pronounced target selectivity in the hilar region, CCK- and parvalbumin-positive neurons innervated each other via collaterals in stratum granulosum and moleculare. Our observations indicate that the inhibitory control in the hilar region is qualitatively different from other cortical areas at both the network level and the level of single neurons. The paucity of perisomatic innervation of hilar interneurons should have profound consequences on their action potential generation and on their ensemble behavior. These findings may help explain the unique physiological patterns observed in the hilus and the selective vulnerability of the hilar cell population in various pathophysiological conditions
PMID: 10995835
ISSN: 0270-6474
CID: 149328

Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements

Harris, K D; Henze, D A; Csicsvari, J; Hirase, H; Buzsaki, G
Simultaneous recording from large numbers of neurons is a prerequisite for understanding their cooperative behavior. Various recording techniques and spike separation methods are being used toward this goal. However, the error rates involved in spike separation have not yet been quantified. We studied the separation reliability of 'tetrode' (4-wire electrode)-recorded spikes by monitoring simultaneously from the same cell intracellularly with a glass pipette and extracellularly with a tetrode. With manual spike sorting, we found a trade-off between Type I and Type II errors, with errors typically ranging from 0 to 30% depending on the amplitude and firing pattern of the cell, the similarity of the waveshapes of neighboring neurons, and the experience of the operator. Performance using only a single wire was markedly lower, indicating the advantages of multiple-site monitoring techniques over single-wire recordings. For tetrode recordings, error rates were increased by burst activity and during periods of cellular synchrony. The lowest possible separation error rates were estimated by a search for the best ellipsoidal cluster shape. Human operator performance was significantly below the estimated optimum. Investigation of error distributions indicated that suboptimal performance was caused by inability of the operators to mark cluster boundaries accurately in a high-dimensional feature space. We therefore hypothesized that automatic spike-sorting algorithms have the potential to significantly lower error rates. Implementation of a semi-automatic classification system confirms this suggestion, reducing errors close to the estimated optimum, in the range 0-8%
PMID: 10899214
ISSN: 0022-3077
CID: 149329

Intracellular features predicted by extracellular recordings in the hippocampus in vivo

Henze, D A; Borhegyi, Z; Csicsvari, J; Mamiya, A; Harris, K D; Buzsaki, G
Multichannel tetrode array recording in awake behaving animals provides a powerful method to record the activity of large numbers of neurons. The power of this method could be extended if further information concerning the intracellular state of the neurons could be extracted from the extracellularly recorded signals. Toward this end, we have simultaneously recorded intracellular and extracellular signals from hippocampal CA1 pyramidal cells and interneurons in the anesthetized rat. We found that several intracellular parameters can be deduced from extracellular spike waveforms. The width of the intracellular action potential is defined precisely by distinct points on the extracellular spike. Amplitude changes of the intracellular action potential are reflected by changes in the amplitude of the initial negative phase of the extracellular spike, and these amplitude changes are dependent on the state of the network. In addition, intracellular recordings from dendrites with simultaneous extracellular recordings from the soma indicate that, on average, action potentials are initiated in the perisomatic region and propagate to the dendrites at 1.68 m/s. Finally we determined that a tetrode in hippocampal area CA1 theoretically should be able to record electrical signals from approximately 1, 000 neurons. Of these, 60-100 neurons should generate spikes of sufficient amplitude to be detectable from the noise and to allow for their separation using current spatial clustering methods. This theoretical maximum is in contrast to the approximately six units that are usually detected per tetrode. From this, we conclude that a large percentage of hippocampal CA1 pyramidal cells are silent in any given behavioral condition
PMID: 10899213
ISSN: 0022-3077
CID: 149330