Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:neelb01

Total Results:

330


Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation

Araki, Toshiyuki; Mohi, M Golam; Ismat, Fraz A; Bronson, Roderick T; Williams, Ifor R; Kutok, Jeffery L; Yang, Wentian; Pao, Lily I; Gilliland, D Gary; Epstein, Jonathan A; Neel, Benjamin G
Noonan syndrome is a common human autosomal dominant birth defect, characterized by short stature, facial abnormalities, heart defects and possibly increased risk of leukemia. Mutations of Ptpn11 (also known as Shp2), which encodes the protein-tyrosine phosphatase Shp2, occur in approximately 50% of individuals with Noonan syndrome, but their molecular, cellular and developmental effects, and the relationship between Noonan syndrome and leukemia, are unclear. We generated mice expressing the Noonan syndrome-associated mutant D61G. When homozygous, the D61G mutant is embryonic lethal, whereas heterozygotes have decreased viability. Surviving Ptpn11(D61G/+) embryos ( approximately 50%) have short stature, craniofacial abnormalities similar to those in Noonan syndrome, and myeloproliferative disease. Severely affected Ptpn11(D61G/+) embryos ( approximately 50%) have multiple cardiac defects similar to those in mice lacking the Ras-GAP protein neurofibromin. Their endocardial cushions have increased Erk activation, but Erk hyperactivation is cell and pathway specific. Our results clarify the relationship between Noonan syndrome and leukemia and show that a single Ptpn11 gain-of-function mutation evokes all major features of Noonan syndrome by acting on multiple developmental lineages in a gene dosage-dependent and pathway-selective manner.
PMID: 15273746
ISSN: 1078-8956
CID: 1364812

Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action

Zabolotny, Janice M; Haj, Fawaz G; Kim, Young-Bum; Kim, Hyo-Jeong; Shulman, Gerald I; Kim, Jason K; Neel, Benjamin G; Kahn, Barbara B
Previous studies implicate protein-tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related phosphatase (LAR) as negative regulators of insulin signaling. The expression and/or activity of PTP1B and LAR are increased in muscle of insulin-resistant rodents and humans. Overexpression of LAR selectively in muscle of transgenic mice causes whole body insulin resistance. To determine whether overexpression of PTP1B also causes insulin resistance, we generated transgenic mice overexpressing human PTP1B selectively in muscle at levels similar to those observed in insulin-resistant humans. Insulin-stimulated insulin receptor (IR) tyrosyl phosphorylation and phosphatidylinositol 3'-kinase activity were impaired by 35% and 40-60% in muscle of PTP1B-overexpressing mice compared with controls. Insulin stimulation of protein kinase C (PKC)lambda/zeta activity, which is required for glucose transport, was impaired in muscle of PTP1B-overexpressing mice compared with controls, showing that PTP1B overexpression impairs activation of these PKC isoforms. Furthermore, hyperinsulinemic-euglycemic clamp studies revealed that whole body glucose disposal and muscle glucose uptake were decreased by 40-50% in PTP1B-overexpressing mice. Overexpression of PTP1B or LAR alone in muscle caused similar impairments in insulin action; however, compound overexpression achieved by crossing PTP1B- and LAR-overexpressing mice was not additive. Antibodies against specific IR phosphotyrosines indicated overlapping sites of action of PTP1B and LAR. Thus, overexpression of PTP1B in vivo impairs insulin sensitivity, suggesting that overexpression of PTP1B in muscle of obese humans and rodents may contribute to their insulin resistance. Lack of additive impairment of insulin signaling by PTP1B and LAR suggests that these PTPs have overlapping actions in causing insulin resistance in vivo.
PMID: 15031294
ISSN: 0021-9258
CID: 1364822

CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity

Chen, Jie; McLean, Paul A; Neel, Benjamin G; Okunade, Gbolahan; Shull, Gary E; Wortis, Henry H
Binding of antigen to the B cell receptor induces a calcium response, which is required for proliferation and antibody production. CD22, a B cell surface protein, inhibits this signal through mechanisms that have been obscure. We report here that CD22 augments calcium efflux after B cell receptor crosslinking. Inhibition of plasma membrane calcium-ATPase (PMCA) attenuated these effects, as did disruption by homologous recombination of the gene encoding PMCA4a and PMCA4b. PMCA coimmunoprecipitated with CD22 in an activation-dependent way. CD22 cytoplasmic tyrosine residues were required for association with PMCA and enhancement of calcium efflux. Moreover, CD22 regulation of efflux and the calcium response required the tyrosine phosphatase SHP-1. Thus, SHP-1 and PMCA provide a mechanism by which CD22, a tissue-specific negative regulator, can affect calcium responses.
PMID: 15133509
ISSN: 1529-2908
CID: 1364832

Macrocyclization in the design of non-phosphorus-containing Grb2 SH2 domain-binding ligands

Shi, Zhen-Dan; Wei, Chang-Qing; Lee, Kyeong; Liu, Hongpeng; Zhang, Manchao; Araki, Toshiyuki; Roberts, Lindsey R; Worthy, Karen M; Fisher, Robert J; Neel, Benjamin G; Kelley, James A; Yang, Dajun; Burke, Terrence R Jr
Macrocyclization from the phosphotyrosyl (pTyr) mimetic's beta-position has previously been shown to enhance Grb2 SH2 domain-binding affinity of phosphonate-based analogues. The current study examined the effects of such macrocyclization using a dicarboxymethyl-based pTyr mimetic. In extracellular assays affinity was enhanced approximately 5-fold relative to an open-chain congener. Enhancement was also observed in whole-cell assays examining blockade of Grb2 binding to the erbB-2 protein-tyrosine kinase.
PMID: 15056012
ISSN: 0022-2623
CID: 1364842

Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs

Mohi, M Golam; Boulton, Christina; Gu, Ting-Lei; Sternberg, David W; Neuberg, Donna; Griffin, James D; Gilliland, D Gary; Neel, Benjamin G
Abnormal protein tyrosine kinases (PTKs) cause many human leukemias. For example, BCR/ABL causes chronic myelogenous leukemia (CML), whereas FLT3 mutations contribute to the pathogenesis of acute myelogenous leukemia. The ABL inhibitor Imatinib (Gleevec, STI571) has remarkable efficacy for treating chronic phase CML, and FLT3 inhibitors (e.g., PKC412) show similar promise in preclinical studies. However, resistance to PTK inhibitors is a major emerging problem that may limit long-term therapeutic efficacy. Development of rational combination therapies will probably be required to effect cures of these and other neoplastic disorders. Here, we report that the mTOR inhibitor rapamycin synergizes with Imatinib against BCR/ABL-transformed myeloid and lymphoid cells and increases survival in a murine CML model. Rapamycin/Imatinib combinations also inhibit Imatinib-resistant mutants of BCR/ABL, and rapamycin plus PKC412 synergistically inhibits cells expressing PKC412-sensitive or -resistant leukemogenic FLT3 mutants. Biochemical analyses raise the possibility that inhibition of 4E-BP1 phosphorylation may be particularly important for the synergistic effects of PTK inhibitor/rapamycin combinations. Addition of a mitogen-activated protein kinase kinase inhibitor to rapamycin or rapamycin plus PTK inhibitor further increases efficacy. Our results suggest that simultaneous targeting of more than one signaling pathway required by leukemogenic PTKs may improve the treatment of primary and relapsed CML and/or acute myelogenous leukemia caused by FLT3 mutations. Similar strategies may be useful for treating solid tumors associated with mutant and/or overexpressed PTKs.
PMCID:365755
PMID: 14976243
ISSN: 0027-8424
CID: 1364852

Site-selective regulation of platelet-derived growth factor beta receptor tyrosine phosphorylation by T-cell protein tyrosine phosphatase

Persson, Camilla; Savenhed, Catrine; Bourdeau, Annie; Tremblay, Michel L; Markova, Boyka; Bohmer, Frank D; Haj, Fawaz G; Neel, Benjamin G; Elson, Ari; Heldin, Carl-Henrik; Ronnstrand, Lars; Ostman, Arne; Hellberg, Carina
The platelet-derived growth factor (PDGF) beta receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF beta receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF beta receptor, we compared PDGF beta receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF beta receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cgamma1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cgamma1 activity and migratory hyperresponsiveness to PDGF. PDGF beta receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPepsilon ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF beta receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors.
PMCID:350555
PMID: 14966296
ISSN: 0270-7306
CID: 1364862

Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment

Zhang, Si Qing; Yang, Wentian; Kontaridis, Maria I; Bivona, Trever G; Wen, Gengyun; Araki, Toshiyuki; Luo, Jincai; Thompson, Julie A; Schraven, Burkhart L; Philips, Mark R; Neel, Benjamin G
The protein-tyrosine phosphatase Shp2 plays an essential role in growth factor and integrin signaling, and Shp2 mutations cause developmental defects and/or malignancy. Previous work has placed Shp2 upstream of Ras. However, the mechanism of Shp2 action and its substrate(s) are poorly defined. Additional Shp2 functions downstream of, or parallel to, Ras/Erk activation also are proposed. Here, we show that Shp2 promotes Src family kinase (SFK) activation by regulating the phosphorylation of the Csk regulator PAG/Cbp, thereby controlling Csk access to SFKs. In Shp2-deficient cells, SFK inhibitory C-terminal tyrosines are hyperphosphorylated, and the tyrosyl phosphorylation of multiple SFK substrates, including Plcgamma1, is decreased. Decreased Plcgamma1 phosphorylation leads to defective Ras activation on endomembranes, and may help account for impaired Erk activation in Shp2-deficient cells. Decreased phosphorylation/activation of other SFK substrates may explain additional consequences of Shp2 deficiency, including altered cell spreading, stress fibers, focal adhesions, and motility
PMID: 14967142
ISSN: 1097-2765
CID: 64125

Islet-sparing effects of protein tyrosine phosphatase-1b deficiency delays onset of diabetes in IRS2 knockout mice

Kushner, Jake A; Haj, Fawaz G; Klaman, Lori D; Dow, Matthew A; Kahn, Barbara B; Neel, Benjamin G; White, Morris F
Protein tyrosine phosphatase-1b (Ptp1b) inhibits insulin and leptin signaling by dephosphorylating specific tyrosine residues in their activated receptor complexes. Insulin signals are mediated by tyrosine phosphorylation of the insulin receptor and its downstream targets, such as Irs1 and Irs2. Irs2 plays an especially important role in glucose homeostasis because it mediates some peripheral actions of insulin and promotes pancreatic beta-cell function. To determine whether the deletion of Ptp1b compensates for the absence of Irs2, we analyzed mice deficient in both Ptp1b and Irs2. Pancreatic beta-cell area decreased in Ptp1b(-/-) mice, consistent with decreased insulin requirements owing to increased peripheral insulin sensitivity. By contrast, peripheral insulin sensitivity and beta-cell area increased in Irs2(-/-)::Ptp1b(-/-) mice, which improved glucose tolerance in Irs2(-/-)::Ptp1b(-/-) mice and delayed diabetes until 3 months of age. However, beta-cell function eventually failed to compensate for absence of Irs2. Our studies demonstrate a novel role for Ptp1b in regulating beta-cell homeostasis and indicate that Ptp1b deficiency can partially compensate for lack of Irs2.
PMID: 14693698
ISSN: 0012-1797
CID: 1364872

SHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase

Marsh, H Nicholas; Dubreuil, Catherine I; Quevedo, Celia; Lee, Anna; Majdan, Marta; Walsh, Gregory S; Hausdorff, Sharon; Said, Farid Arab; Zoueva, Olga; Kozlowski, Maya; Siminovitch, Katherine; Neel, Benjamin G; Miller, Freda D; Kaplan, David R
Nerve growth factor (NGF) mediates the survival and differentiation of neurons by stimulating the tyrosine kinase activity of the TrkA/NGF receptor. Here, we identify SHP-1 as a phosphotyrosine phosphatase that negatively regulates TrkA. SHP-1 formed complexes with TrkA at Y490, and dephosphorylated it at Y674/675. Expression of SHP-1 in sympathetic neurons induced apoptosis and TrkA dephosphorylation. Conversely, inhibition of endogenous SHP-1 with a dominant-inhibitory mutant stimulated basal tyrosine phosphorylation of TrkA, thereby promoting NGF-independent survival and causing sustained and elevated TrkA activation in the presence of NGF. Mice lacking SHP-1 had increased numbers of sympathetic neurons during the period of naturally occurring neuronal cell death, and when cultured, these neurons survived better than wild-type neurons in the absence of NGF. These data indicate that SHP-1 can function as a TrkA phosphatase, controlling both the basal and NGF-regulated level of TrkA activity in neurons, and suggest that SHP-1 regulates neuron number during the developmental cell death period by directly regulating TrkA activity.
PMCID:2173621
PMID: 14662744
ISSN: 0021-9525
CID: 1364882

Signal transduction: an eye on organ development [Comment]

Epstein, Jonathan A; Neel, Benjamin G
PMID: 14628032
ISSN: 0028-0836
CID: 1364892