Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:sodicd01

Total Results:

234


A generalized approach to parallel magnetic resonance imaging

Sodickson, D K; McKenzie, C A
Parallel magnetic resonance (MR) imaging uses spatial encoding from multiple radiofrequency detector coils to supplement the encoding supplied by magnetic field gradients, and thereby to accelerate MR image acquisitions beyond previous limits. A generalized formulation for parallel MR imaging is derived, demonstrating the relationship between existing techniques such as SMASH and SENSE, and suggesting new algorithms with improved performance. Hybrid approaches combining features of both SMASH-like and SENSE-like image reconstructions are constructed, and numerical conditioning techniques are described which can improve the practical robustness of parallel image reconstructions. Incorporation of numerical conditioning directly into parallel reconstructions using the generalized approach also removes a cumbersome and potentially error-prone sensitivity calibration step involving division of two distinct in vivo reference images. Hybrid approaches in combination with numerical conditioning are shown to extend the range of accelerations over which high-quality parallel images may be obtained
PMID: 11548932
ISSN: 0094-2405
CID: 71848

Superiority of prone position in free-breathing 3D coronary MRA in patients with coronary disease

Stuber, M; Danias, P G; Botnar, R M; Sodickson, D K; Kissinger, K V; Manning, W J
Navigator-gated and corrected 3D coronary MR angiography (MRA) allows submillimeter image acquisition during free breathing. However, cranial diaphragmatic drift and relative phase shifts of chest-wall motion are limiting factors for image quality and scanning duration. We hypothesized that image acquisition in the prone position would minimize artifacts related to chest-wall motion and suppress diaphragmatic drift. Twelve patients with radiographically-confirmed coronary artery disease and six healthy adult volunteers were studied in both the prone and the supine position during free-breathing navigator-gated and corrected 3D coronary MRA. Image quality and the diaphragmatic positions were objectively compared. In the prone position, there was a 36% improvement in signal-to-noise ratio (SNR; 15.5 +/- 2.7 vs. 11.4 +/- 2.6; P < 0.01) and a 34% improvement in CNR (12.5 +/- 3.3 vs. 9.3 +/- 2.5, P < 0.01). The prone position also resulted in a 17% improvement in coronary vessel definition (P < 0.01). Cranial end-expiratory diaphragmatic drift occurred less frequently in the prone position (23% +/- 17% vs. 40% +/- 26% supine; P <0.05), and navigator efficiency was higher. Prone coronary MRA results in improved SNR and CNR with enhanced coronary vessel definition. Cranial end-expiratory diaphragmatic drift also was reduced, and navigator efficiency was enhanced. When feasible, prone imaging is recommended for free-breathing coronary MRA
PMID: 11169823
ISSN: 1053-1807
CID: 71849

Contrast-enhanced 3D MR angiography with simultaneous acquisition of spatial harmonics: A pilot study

Sodickson, D K; McKenzie, C A; Li, W; Wolff, S; Manning, W J; Edelman, R R
A partially parallel image acquisition technique, simultaneous acquisition of spatial harmonics, or SMASH, was used to increase the spatial and/or temporal resolution in contrast material-enhanced three-dimensional magnetic resonance angiography of the abdominal aorta and renal arteries. In eight healthy subjects, the breath-hold duration was halved at constant spatial resolution, or the spatial resolution was doubled at fixed breath-hold duration, with a 30%-55% reduction in the signal-to-noise ratio but otherwise preserved or improved image quality
PMID: 11012458
ISSN: 0033-8419
CID: 71850

Tailored SMASH image reconstructions for robust in vivo parallel MR imaging

Sodickson, D K
The simultaneous acquisition of spatial harmonics (SMASH) imaging technique uses spatial information from an array of RF coils to substitute for omitted encoding gradient steps and thereby to accelerate MR image acquisition. Since SMASH image reconstructions rely on the accurate generation of sinusoidally varying composite sensitivity functions to emulate the spatial modulations produced by gradients, the technique was originally believed to be limited to certain image planes or coil array configurations which were particularly suited to the generation of spatial harmonics. Several key improvements to the SMASH reconstruction procedure are described, taking advantage of various degrees of freedom in the spatial harmonic fit. The use of tailored fitting procedures, in combination with a numerical conditioning approach based on new observations about noise propagation in the fit, are shown to allow high-quality SMASH image reconstructions in oblique and double-oblique image planes, both in phantoms and in high-resolution cardiac MR images. Magn Reson Med 44:243-251, 2000
PMID: 10918323
ISSN: 0740-3194
CID: 71851

A multicoil array designed for cardiac SMASH imaging

Griswold, M A; Jakob, P M; Edelman, R R; Sodickson, D K
Recently, several partially parallel acquisition (PPA) techniques have been presented which use spatial information inherent in an RF coil array to reconstruct an image from a reduced set of phase encoding steps. PPAs represent a change in paradigm for the RF coil designer since the focus for arrays to be used with PPAs is to optimize the spatial encoding that is provided by the array. One of the first practical implementations of PPA imaging was demonstrated using the SMASH technique. In this study, we present our results from the construction of the first array designed specifically for cardiac SMASH imaging. Additional design criteria are presented for SMASH arrays that are not considered in conventional array design. Using these design criteria, a four-element array was constructed and then tested in SMASH imaging experiments in the heart. This array has been used in all of our initial cardiac and head SMASH studies with good results
PMID: 10873200
ISSN: 0968-5243
CID: 71852

SMASH imaging with an eight element multiplexed RF coil array

Bankson, J A; Griswold, M A; Wright, S M; Sodickson, D K
SMASH (SiMultaneous Acquisition of Spatial Harmonics) is a technique which can be used to acquire multiple lines of k-space in parallel, by using spatial information from a radiofrequency coil array to perform some of the encoding normally produced by gradients. Using SMASH, imaging speed can be increased up to a maximum acceleration factor equal to the number of coil array elements. This work is a feasibility study which examines the use of SMASH with specialized coil array and data reception hardware to achieve previously unattainable accelerations. An eight element linear SMASH array was designed to operate in conjunction with a time domain multiplexing system to examine the effectiveness of SMASH imaging with as much as eightfold acceleration factors. Time domain multiplexing allowed the multiple independent array elements to be sampled through a standard single-channel receiver. SMASH-reconstructed images using this system were compared with reference images, and signal to noise ratio and reconstruction artifact power were measured as a function of acceleration factor. Results of the imaging experiments showed an almost constant SNR for SMASH acceleration factors of up to eight. Artifact power remained low within this range of acceleration factors. This study demonstrates that efficient SMASH imaging at high acceleration factors is feasible using appropriate hardware, and that time domain multiplexing is a convenient strategy to provide the multiple channels required for rapid imaging with large arrays
PMID: 10873199
ISSN: 0968-5243
CID: 71853

Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography

Stuber, M; Botnar, R M; Danias, P G; Sodickson, D K; Kissinger, K V; Van Cauteren, M; De Becker, J; Manning, W J
OBJECTIVES: The goal of the present study was to develop a strategy for three-dimensional (3D) volume acquisition along the major axes of the coronary arteries. BACKGROUND: For high-resolution 3D free-breathing coronary magnetic resonance angiography (MRA), coverage of the coronary artery tree may be limited due to excessive measurement times associated with large volume acquisitions. Planning the 3D volume along the major axis of the coronary vessels may help to overcome such limitations. METHODS: Fifteen healthy adult volunteers and seven patients with X-ray angiographically confirmed coronary artery disease underwent free-breathing navigator-gated and corrected 3D coronary MRA. For an accurate volume targeting of the high resolution scans, a three-point planscan software tool was applied. RESULTS: The average length of contiguously visualized left main and left anterior descending coronary artery was 81.8 +/- 13.9 mm in the healthy volunteers and 76.2 +/- 16.5 mm in the patients (p = NS). For the right coronary artery, a total length of 111.7 +/- 27.7 mm was found in the healthy volunteers and 79.3 +/- 4.6 mm in the patients (p = NS). Comparing coronary MRA and X-ray angiography, a good agreement of anatomy and pathology was found in the patients. CONCLUSIONS: Double-oblique submillimeter free-breathing coronary MRA allows depiction of extensive parts of the native coronary arteries. The results obtained in patients suggest that the method has the potential to be applied in broader prospective multicenter studies where coronary MRA is compared with X-ray angiography
PMID: 10440168
ISSN: 0735-1097
CID: 71854

Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH)

Griswold MA; Jakob PM; Chen Q; Goldfarb JW; Manning WJ; Edelman RR; Sodickson DK
Spatial resolution in single-shot imaging is limited by signal attenuation due to relaxation of transverse magnetization. This effect can be reduced by minimizing acquisition times through the use of short interecho spacings. However, the minimum interecho spacing is constrained by limits on gradient switching rates, radiofrequency (RF) power deposition and RF pulse length. Recently, simultaneous acquisition of spatial harmonics (SMASH) has been introduced as a method to acquire magnetic resonance images at increased speeds using a reduced number of phase-encoding gradient steps by extracting spatial information contained in an RF coil array. In this study, it is shown that SMASH can be used to reduce the effects of relaxation, resulting in single-shot images with increased spatial resolution without increasing imaging time. After a brief theoretical discussion, two strategies to reduce signal attenuation and increase spatial resolution in single-shot imaging are introduced and their performance is evaluated in phantom studies. In vivo single-shot echoplanar imaging (EPI), BURST, and half-Fourier single-shot turbo spin-echo (HASTE) images are then presented demonstrating the practical implementation of these resolution enhancement strategies. Images acquired with SMASH show increased spatial resolution and improved image quality when compared with images obtained with the conventional acquisitions. The general principles presented for imaging with SMASH can also be applied to other partially parallel imaging techniques
PMID: 10371457
ISSN: 0740-3194
CID: 47883

SMASH imaging

Sodickson, D K; Griswold, M A; Jakob, P M
SMASH imaging is a new MR imaging technique that can be used to multiply the speed of existing imaging sequences. It operates by using an array of radiofrequency (RF) detection coils to perform some of the spatial encoding normally accomplished with magnetic field gradients. The speed of the SMASH technique results from appropriate combinations of coil array RF signals in which multiple lines of image data are gathered simultaneously, rather than one after another. SMASH can be used in conjunction with most rapid imaging sequences, including EPI, resulting in multiplicative gains in imaging speed. This article reviews the basic principles of SMASH imaging, outlines requirements for practical implementation, and presents a variety of in vivo results, highlighting ways in which SMASH may be used to increase imaging speed and to improve image quality for clinical MR imaging applications
PMID: 10382159
ISSN: 1064-9689
CID: 71855

Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging

Sodickson, D K; Griswold, M A; Jakob, P M; Edelman, R R; Manning, W J
A general theory of signal-to-noise ratio (SNR) in simultaneous acquisition of spatial harmonics (SMASH) imaging is presented, and the predictions of the theory are verified in imaging experiments and in numerical simulations. In a SMASH image, multiple lines of k-space are generated simultaneously through combinations of magnetic resonance signals in a radiofrequency coil array. Here, effects of noise correlations between array elements as well as new correlations introduced by the SMASH reconstruction procedure are assessed. SNR and SNR efficiency in SMASH images are compared with results using traditional array combination strategies. Under optimized conditions, SMASH achieves the same average SNR efficiency as ideal pixel-by-pixel array combinations, while allowing imaging to proceed at otherwise unattainable speeds. The k-space nature of SMASH reconstructions can lead to oscillatory spatial variations in noise standard deviation, which can produce local enhancements of SNR in particular regions
PMID: 10332885
ISSN: 0740-3194
CID: 71856