Searched for: in-biosketch:yes
person:chaom01
Loss of p27Kip1 function results in increased proliferative capacity of oligodendrocyte progenitors but unaltered timing of differentiation
Casaccia-Bonnefil P; Hardy RJ; Teng KK; Levine JM; Koff A; Chao MV
In many tissues, progenitor cells permanently withdraw from the cell cycle prior to commitment towards a differentiated phenotype. In the oligodendrocyte lineage a counting mechanism has been proposed, linking the number of cell divisions to growth arrest and differentiation. A direct prediction of this model is that an increase in the number of cell divisions would result in a delayed onset of differentiation. Since the cell cycle inhibitor p27Kip1 is an essential component of the machinery leading to oligodendrocyte progenitor growth arrest, we examined the temporal relationship between cell cycle withdrawal and expression of late differentiation markers in vivo, in mice carrying a targeted deletion in the p27Kip1 gene. Using bromodeoxyuridine to label proliferating cells, quaking (QKI) to identify embryonic glial progenitors, NG2 to identify neonatal oligodendrocyte progenitors, and myelin basic protein to label differentiated oligodendrocytes, we found an increased number of proliferating QKI- and NG2-positive cells in germinal zones of p27Kip1(-/-) mice at the peak of gliogenesis. However, no delay was observed in these mice in the appearance of the late differentiation marker myelin basic protein in the developing corpus callosum and cerebellum. Significantly, a decrease in cyclin E levels was observed in the brain of p27Kip1 null mice coincident with oligodendrocyte growth arrest. We conclude that two distinct modalities of growth arrest occur in the oligodendrocyte lineage: a p27Kip1-dependent mechanism of growth arrest affecting proliferation in early phases of gliogenesis, and a p27Kip1-independent event leading to withdrawal from the cell cycle and differentiation
PMID: 10457012
ISSN: 0950-1991
CID: 6185
Mechanisms of regulation of oligodendrocyte cell number [Meeting Abstract]
Casaccia-Bonnefil, P; Hardy, R; Levine, J; Chao, MV
ISI:000081536500644
ISSN: 0022-3042
CID: 53995
Morphological differentiation of oligodendrocytes requires activation of Fyn tyrosine kinase
Osterhout DJ; Wolven A; Wolf RM; Resh MD; Chao MV
In the central nervous system, myelination of axons occurs when oligodendrocyte progenitors undergo terminal differentiation and initiate process formation and axonal ensheathment. Although it is hypothesized that neuron-oligodendrocyte contact initiates this process, the molecular signals are not known. Here we find that Fyn tyrosine kinase activity is upregulated very early during oligodendrocyte progenitor cell differentiation. Concomitant with this increase is the appearance of several tyrosine phosphorylated proteins present only in differentiated cells. The increased tyrosine kinase activity is specific to Fyn, as other Src family members are not active in oligodendrocytes. To investigate the function of Fyn activation on differentiation, we used Src family tyrosine kinase inhibitors, PP1 and PP2, in cultures of differentiating oligodendrocyte progenitors. Treatment of progenitors with these compounds prevented activation of Fyn and reduced process extension and myelin membrane formation. This inhibition was reversible and not observed with related inactive analogues. A similar effect was observed when a dominant negative Fyn was introduced in progenitor cells. These findings strongly suggest that activation of Fyn is an essential signaling component for the morphological differentiation of oligodendrocytes
PMCID:2133143
PMID: 10366594
ISSN: 0021-9525
CID: 6138
p75 neurotrophin receptor as a modulator of survival and death decisions
Casaccia-Bonnefil P; Gu C; Khursigara G; Chao MV
The p75 receptor is the founding member of the TNF receptor superfamily. Members in this receptor family share a common cysteine motif repeated two to six times that serves as the ligand binding domain. In addition, several members contain a cytoplasmic region designated the death domain. The neurotrophins NGF, BDNF, NT-3, and NT-4 each bind to the p75 receptor and also more selectively to members of the Trk family of receptor tyrosine kinases. Although the biological functions of p75 have been elusive, recent experimental evidence supports an involvement of this receptor in apoptosis. This presents a counter-intuitive function for neurotrophins, which are normally required for the survival of neurons during development. The life-and-death decisions by neurotrophins appear to be governed by the level of expression and signaling activities of the p75 and Trk tyrosine kinase receptors and their downstream effector molecules. The generation of the correct number of cells in the nervous system is a highly controlled and coordinated process that is the consequence of cell proliferation and cell death decisions. The appropriate number of neuronal and glial cells formed during development guarantees the establishment of proper innervation and functional synaptic connections. One common mechanism to account for the number of viable cells is the ability to form ligand-receptor complexes that promote cell survival under conditions of limiting concentrations of trophic factors. Another diametrically opposed mechanism is to produce ligand-receptor interactions that can activate programmed cell death directly
PMID: 10383114
ISSN: 1059-910x
CID: 56448
Oligodendrocyte apoptosis mediated by caspase activation
Gu C; Casaccia-Bonnefil P; Srinivasan A; Chao MV
Treatment with NGF causes long-term cultures of oligodendrocytes to die via a yet undefined mechanism mediated by the p75 neurotrophin receptor. The p75 receptor belongs to the TNF receptor superfamily of molecules, which includes Fas and p55 TNF receptors. The Fas and TNF receptors use adaptor molecules to recruit and activate caspase-8 to the receptor. Using a combination of immunohistochemical and Western blotting assays, we have examined caspase activity during NGF-induced apoptosis. Interestingly, although caspase-1 [interleukin-1beta-converting enzyme (ICE)], caspase-2, caspase-3, and caspase-8 were expressed in oligodendrocytes, only caspase-1, -2, and -3 were activated after NGF treatment, whereas caspase-8 was not. These data suggest that the mechanism of apoptosis by NGF through the p75 receptor is different from TNF and Fas-mediated killing. gamma Radiation of oligodendrocytes also activated a similar subset of caspases as NGF, indicating that NGF-induced oligodendrocyte apoptosis uses a similar cell death execution mechanism as injury models. This consolidates a potential role of the p75 neurotrophin receptor during stress and inflammatory conditions
PMID: 10191321
ISSN: 0270-6474
CID: 8514
"The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations (vol 103, pg 355, 1999)" [Meeting Abstract]
Vaishnaw, AK; Orlinick, JR; Chu, JL; Krammer, PH; Chao, MV; Elkon, KB
ISI:000079633400020
ISSN: 0021-9738
CID: 105086
Differential association of phosphatidylinositol-5-phosphate 4-kinase with the EGF/ErbB family of receptors
Castellino AM; Chao MV
Phosphatidylinositol-5-phosphate 4-kinase (PIP4K) is required for the production of phosphoinositol-4,5-hisphosphate (PIP2), which has been closely associated with growth factor signalling. Here we have tested the possibility that phosphoinositide kinases may be take part in signal transduction through interactions with the epidermal growth factor (EGF) receptor and the ErbB family of tyrosine kinase receptors. Interactions of the Type IIbeta isoform of PIP4K were observed with the EGF receptor family members in a number of diverse cell lines, including A431, PC12 and MCF7 cells but not with the N6F TrkA receptor. Co-immunoprecipitation experiments indicate that PIP4K interacts with not only the EGF receptor, but also selectively with members of the ErbB tyrosine kinase family. These results demonstrate another enzyme substrate for EGF receptors that facilitates the production of phosphoinositides at the cell membrane
PMID: 10353691
ISSN: 0898-6568
CID: 14642
The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations [published erratum appears in J Clin Invest 1999 Apr;103(7):1099]
Vaishnaw AK; Orlinick JR; Chu JL; Krammer PH; Chao MV; Elkon KB
Heterozygous mutations of the receptor CD95 (Fas/Apo-1) are associated with defective lymphocyte apoptosis and a clinical disease characterized by lymphadenopathy, splenomegaly, and systemic autoimmunity. From our cohort of 11 families, we studied eight patients to define the mechanisms responsible for defective CD95-mediated apoptosis. Mutations in and around the death domain of CD95 had a dominant-negative effect that was explained by interference with the recruitment of the signal adapter protein, FADD, to the death domain. The intracellular domain (ICD) mutations were associated with a highly penetrant Canale-Smith syndrome (CSS) phenotype and an autosomal dominant inheritance pattern. In contrast, mutations affecting the CD95 extracellular domain (ECD) resulted in failure of extracellular expression of the mutant protein or impaired binding to CD95 ligand. They did not have a dominant-negative effect. In each of the families with an ECD mutation, only a single individual was affected. These observations were consistent with differing mechanisms of action and modes of inheritance of ICD and ECD mutations, suggesting that individuals with an ECD mutation may require additional defect(s) for expression of CSS
PMCID:407903
PMID: 9927496
ISSN: 0021-9738
CID: 7460
Association of the p75 neurotrophin receptor with TRAF6
Khursigara G; Orlinick JR; Chao MV
In addition to the Trk tyrosine kinase receptors, neurotrophins also bind to a second receptor, p75, a member of the tumor necrosis factor receptor superfamily. Several signaling pathways have been implicated for p75 in the absence of Trk receptors, including induction of NF-kappaB and c-Jun kinase activities and increased production of ceramide. However, to date, the mechanisms by which the p75 receptor initiates intracellular signal transduction have not been defined. Here we report a specific interaction between p75 and TRAF6 (tumor necrosis factor receptor-associated factor-6) after transient transfection in HEK293T cells. The interaction was ligand-dependent and maximal at 100 ng/ml of nerve growth factor (NGF). Other neurotrophins also promoted the association of TRAF6 with p75 but to a lesser extent. The binding of TRAF6 was localized to the juxtamembrane region of p75 by co-immunoprecipitation and Western blotting. To assess the functional significance of this interaction, we have tested responses in cultured Schwann cells that express p75 and TRAF6. An NGF-mediated increase in the nuclear localization of the p65 subunit of NF-kappaB could be blocked by the introduction of a dominant negative form of TRAF6 in Schwann cells. These results indicate that TRAF6 can potentially function as a signal transducer for NGF actions through the p75 receptor
PMID: 9915784
ISSN: 0021-9258
CID: 7369
Neurotrophins in cell survival/death decisions
Casaccia-Bonnefil P; Gu C; Chao MV
Neurotrophins are target-derived soluble factors required for neuronal survival. Nerve growth factor (NGF) the founding member of the neurotrophin family, binds to two types of receptors: Trk tyrosine kinase and the p75 neurotrophin receptor, which belongs to the Fas-tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to Trk receptor tyrosine kinases initiate signaling cascades that promote cell survival sand differentiation. In contrast, p75 NGFR has been shown to modulate the susceptibility to death of selective cellular populations--including differentiated rat oligodendrocytes--in specific conditions. Notably, NGF effect on viability was only observed in fully differentiated oligodendrocytes and not in oligodendrocyte progenitor cells. The effect of p75 activation on oligodendrocyte survival correlates with increased activity of the stress related kinase JNK-1 and cleavage of specific caspases. Indeed, activation of additional stress pathways or impairment of survival signals may be required for p75 mediated activation of cell death execution programs. Interestingly, co-expression of the TrkA receptor in the same cell type abolishes the JNK-1 mediated death signal and induces MAP kinase activity, resulting in cell survival. This suggests that glial cell survival results from a balance between positive and negative regulators modulated by selective signalling pathways by tyrosine kinases and cytokine receptors
PMID: 10635036
ISSN: 0065-2598
CID: 11864