Searched for: in-biosketch:yes
person:littmd01
Cutting edge: organogenesis of nasal-associated lymphoid tissue (NALT) occurs independently of lymphotoxin-alpha (LT alpha) and retinoic acid receptor-related orphan receptor-gamma, but the organization of NALT is LT alpha dependent
Harmsen, Allen; Kusser, Kimberley; Hartson, Louise; Tighe, Michael; Sunshine, Mary Jean; Sedgwick, Jonathon D; Choi, Yongwon; Littman, Dan R; Randall, Troy D
Peyer's patch and nasal-associated lymphoid tissue (NALT) are mucosal lymphoid tissues that appear similar in structure and function. Surprisingly, we found that NALT, unlike Peyer's patch, was formed independently of lymphotoxin (LT)alpha. Furthermore, using mice deficient in the retinoic acid receptor-related orphan receptor-gamma, we found that NALT was formed in the absence of CD4+CD3- cells, which are thought to be the embryonic source of LTalpha. However, we also found that NALT of LTalpha-/- animals was disorganized and lymphopenic, suggesting that the organization and recruitment of lymphocytes within NALT remained dependent on LTalpha. Finally, we demonstrated that both the structure and function of NALT were restored in LTalpha-/- animals upon reconstitution with normal bone marrow. These results demonstrate that the organogenesis of NALT occurs through unique mechanisms
PMID: 11801629
ISSN: 0022-1767
CID: 69532
DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection
Kwon, Douglas S; Gregorio, Glenn; Bitton, Natacha; Hendrickson, Wayne A; Littman, Dan R
Fusion of the human immunodeficiency virus (HIV) to the plasma membrane of target cells is mediated by interaction of its envelope glycoprotein, gp120, with CD4 and appropriate chemokine receptors. gp120 additionally binds to DC-SIGN, a C-type lectin expressed on immature dendritic cells. This interaction does not result in viral fusion, but instead contributes to enhanced infection in trans of target cells that express CD4 and chemokine receptors. Here we show that DC-SIGN mediates rapid internalization of intact HIV into a low pH nonlysosomal compartment. Internalized virus retains competence to infect target cells. Removal of the DC-SIGN cytoplasmic tail reduced viral uptake and abrogated the trans-enhancement of T cell infection. We propose that HIV binds to DC-SIGN to gain access to an intracellular compartment that contributes to augmentation or retention of viral infectivity
PMID: 11825572
ISSN: 1074-7613
CID: 39719
Epigenetic Regulation in T Cell Development
Littman, Dan
[S.l.] : NIH, 2002
Extent: Videocast : 1:06:24 ; Air date: Thursday, March 28, 2002, 11:30:00 AM
ISBN: n/a
CID: 1424
Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues
Palframan, R T; Jung, S; Cheng, G; Weninger, W; Luo, Y; Dorf, M; Littman, D R; Rollins, B J; Zweerink, H; Rot, A; von Andrian, U H
Interstitial fluid is constantly drained into lymph nodes (LNs) via afferent lymph vessels. This conduit enables monocyte-derived macrophages and dendritic cells to access LNs from peripheral tissues. We show that during inflammation in the skin, a second recruitment pathway is evoked that recruits large numbers of blood-borne monocytes to LNs via high endothelial venules (HEVs). Inhibition of monocyte chemoattractant protein (MCP)-1 blocked this inflammation-induced monocyte homing to LNs. MCP-1 mRNA in inflamed skin was over 100-fold upregulated and paralleled MCP-1 protein levels, whereas in draining LNs MCP-1 mRNA induction was much weaker and occurred only after a pronounced rise in MCP-1 protein. Thus, MCP-1 in draining LNs was primarily derived from inflamed skin. In MCP-1(-/-) mice, intracutaneously injected MCP-1 accumulated rapidly in the draining LNs where it enhanced monocyte recruitment. Intravital microscopy showed that skin-derived MCP-1 was transported via the lymph to the luminal surface of HEVs where it triggered integrin-dependent arrest of rolling monocytes. These findings demonstrate that inflamed peripheral tissues project their local chemokine profile to HEVs in draining LNs and thereby exert "remote control" over the composition of leukocyte populations that home to these organs from the blood.
PMCID:2195988
PMID: 11696600
ISSN: 0022-1007
CID: 531562
Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage
Zou YR; Sunshine MJ; Taniuchi I; Hatam F; Killeen N; Littman DR
The process of thymocyte development culminates in the maturation of helper (CD4+) and cytotoxic (CD8+) T cells from their common precursors, the CD4+CD8+ double-positive cells. A crucial step during lineage specification is the termination of expression of either the CD4 or the CD8 coreceptor. A silencer element within the first intron of the CD4 gene is sufficient for CD4 transcriptional repression in cells of the cytotoxic lineage, as well as in thymocytes at earlier stages of differentiation. Here we show that the function of the CD4 silencer is required only at distinct stages of development. Its deletion before the initiation of lineage specification resulted in CD4 derepression throughout thymocyte differentiation. By contrast, once cells committed to the cytotoxic CD8+ lineage, the CD4 locus remained silent through subsequent mitoses, even when the silencer element was excised. The epigenetic inheritance of the silenced CD4 locus was not affected by the inhibition of DNA methylation or histone deacetylation, and may thus involve other mechanisms that ensure a stable state of gene expression
PMID: 11687799
ISSN: 1061-4036
CID: 26588
Functional and antigenic characterization of human, rhesus macaque, pigtailed macaque, and murine DC-SIGN
Baribaud, F; Pohlmann, S; Sparwasser, T; Kimata, M T; Choi, Y K; Haggarty, B S; Ahmad, N; Macfarlan, T; Edwards, T G; Leslie, G J; Arnason, J; Reinhart, T A; Kimata, J T; Littman, D R; Hoxie, J A; Doms, R W
DC-SIGN, a type II membrane protein with a C-type lectin binding domain that is highly expressed on mucosal dendritic cells (DCs) and certain macrophages in vivo, binds to ICAM-3, ICAM-2, and human and simian immunodeficiency viruses (HIV and SIV). Virus captured by DC-SIGN can be presented to T cells, resulting in efficient virus infection, perhaps representing a mechanism by which virus can be ferried via normal DC trafficking from mucosal tissues to lymphoid organs in vivo. To develop reagents needed to characterize the expression and in vivo functions of DC-SIGN, we cloned, expressed, and analyzed rhesus macaque, pigtailed macaque, and murine DC-SIGN and made a panel of monoclonal antibodies (MAbs) to human DC-SIGN. Rhesus and pigtailed macaque DC-SIGN proteins were highly similar to human DC-SIGN and bound and transmitted HIV type 1 (HIV-1), HIV-2, and SIV to receptor-positive cells. In contrast, while competent to bind virus, murine DC-SIGN did not transmit virus to receptor-positive cells under the conditions tested. Thus, mere binding of virus to a C-type lectin does not necessarily mean that transmission will occur. The murine and macaque DC-SIGN molecules all bound ICAM-3. We mapped the determinants recognized by a panel of 16 MAbs to the repeat region, the lectin binding domain, and the extreme C terminus of DC-SIGN. One MAb was specific for DC-SIGN, failing to cross-react with DC-SIGNR. Most MAbs cross-reacted with rhesus and pigtailed macaque DC-SIGN, although none recognized murine DC-SIGN. Fifteen of the MAbs recognized DC-SIGN on DCs, with MAbs to the repeat region generally reacting most strongly. We conclude that rhesus and pigtailed macaque DC-SIGN proteins are structurally and functionally similar to human DC-SIGN and that the reagents that we have developed will make it possible to study the expression and function of this molecule in vivo.
PMCID:114602
PMID: 11581396
ISSN: 0022-538x
CID: 531582
The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium
Huo, Y; Weber, C; Forlow, S B; Sperandio, M; Thatte, J; Mack, M; Jung, S; Littman, D R; Ley, K
In a reconstituted flow chamber system, preincubation with chemokines can trigger the arrest of rolling monocytes, suggesting that this interaction could help recruit these cells to early atherosclerotic lesions. To date, however, the contribution of endothelium-derived chemokines found in these lesion to monocyte arrests has not been investigated. The endothelium of lesion-prone carotid arteries from apolipoprotein E-deficient (ApoE(-/-)) mice, but not control mice, presents the chemokines KC (mouse GRO-alpha) and JE (mouse monocyte chemoattractant protein-1 [MCP-1]). Arrest of a monocytic cell line or mouse blood monocytes perfused through carotid arteries of ApoE(-/-) mice was reduced by treating with either pertussis toxin, an antagonist of CXCR2, or an antibody to KC, but this process was insensitive to agents that blocked CCR-2 or JE. Conversely, monocyte accumulation more than doubled upon pre-perfusion of the carotid artery with KC but not with mouse MCP-1. Blockade of alpha(4)beta(1) integrin (VLA-4) or vascular cell adhesion molecule-1, but not CD18 or intercellular adhesion molecule-1, almost completely inhibited the arrest of monocytes. We conclude that when presented by early atherosclerotic lesions, KC but not murine MCP-1 triggers VLA-4-dependent monocyte recruitment.
PMCID:209441
PMID: 11696575
ISSN: 0021-9738
CID: 531572
A coordinated change in chemokine responsiveness guides plasma cell movements
Hargreaves, D C; Hyman, P L; Lu, T T; Ngo, V N; Bidgol, A; Suzuki, G; Zou, Y R; Littman, D R; Cyster, J G
Antibody-secreting plasma cells are nonrecirculatory and lodge in splenic red pulp, lymph node medullary cords, and bone marrow. The factors that regulate plasma cell localization are poorly defined. Here we demonstrate that, compared with their B cell precursors, plasma cells exhibit increased chemotactic sensitivity to the CXCR4 ligand CXCL12. At the same time, they downregulate CXCR5 and CCR7 and have reduced responsiveness to the B and T zone chemokines CXCL13, CCL19, and CCL21. We demonstrate that CXCL12 is expressed within splenic red pulp and lymph node medullary cords as well as in bone marrow. In chimeric mice reconstituted with CXCR4-deficient fetal liver cells, plasma cells are mislocalized in the spleen, found in elevated numbers in blood, and fail to accumulate normally in the bone marrow. Our findings indicate that as B cells differentiate into plasma cells they undergo a coordinated change in chemokine responsiveness that regulates their movements in secondary lymphoid organs and promotes lodgment within the bone marrow.
PMCID:2193440
PMID: 11435471
ISSN: 0022-1007
CID: 531592
Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8T cell development
Wolfer, A; Bakker, T; Wilson, A; Nicolas, M; Ioannidis, V; Littman, D R; Lee, P P; Wilson, C B; Held, W; MacDonald, H R; Radtke, F
Notch proteins influence cell-fate decisions in many developing systems. Several gain-of-function studies have suggested a critical role for Notch 1 signaling in CD4-CD8 lineage commitment, maturation and survival in the thymus. However, we show here that tissue-specific inactivation of the gene encoding Notch 1 in immature (CD25+CD44-)T cell precursors does not affect subsequent thymocyte development. Neither steady-state numbers nor the rate of production of CD4+ and CD8+ mature thymocytes is perturbed in the absence of Notch 1. In addition, Notch 1-deficient thymocytes are normally sensitive to spontaneous or glucocorticoid-induced apoptosis. In contrast to earlier reports, these data formally exclude an essential role for Notch 1 in CD4-CD8 lineage commitment, maturation or survival.
PMID: 11224523
ISSN: 1529-2908
CID: 531612
Human GLI-2 is a tat activation response element-independent Tat cofactor
Browning, C M; Smith, M J; Clark, N M; Lane, B R; Parada, C; Montano, M; KewalRamani, V N; Littman, D R; Essex, M; Roeder, R G; Markovitz, D M
Zinc finger-containing GLI proteins are involved in the development of Caenorhabditis elegans, Xenopus, Drosophila, zebrafish, mice, and humans. In this study, we show that an isoform of human GLI-2 strongly synergizes with the Tat transactivating proteins of human immunodeficiency virus types 1 and 2 (HIV-1 and -2) and markedly stimulates viral replication. GLI-2 also synergizes with the previously described Tat cofactor cyclin T1 to stimulate Tat function. Surprisingly, GLI-2/Tat synergy is not dependent on either a typical GLI DNA binding site or an intact Tat activation response element but does require an intact TATA box. Thus, GLI-2/Tat synergy results from a mechanism of action which is novel both for a GLI protein and for a Tat cofactor. These findings link the GLI family of transcriptional and developmental regulatory proteins to Tat function and HIV replication.
PMCID:114814
PMID: 11160734
ISSN: 0022-538x
CID: 531602